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What’s algebraic K-theory

Let R be a ring.

Definition
There is a connective spectrum K (R), called the algebraic
K-theory spectrum of R. The association R 7→ K (R) is functorial
and Morita-invariant.

The homotopy groups Kn(R) of K (R) are the K-groups of R. You
may know some of them:

• K0(R) is the group completion of the monoid (under ⊕) of
isomorphisms class of finite-type projective modules.

• K1(R) is the abelianisation of GL(R), the infinite general
linear group.

Many questions about R can be turned into questions about K (R).
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What’s algebraic K-theory (2)

Two examples of problems which can be formulated via K-theory:
• (Wall’s finiteness obstruction) Let X be a finitely dominated

space, i.e. there is a finite CW-complex Y which retracts onto
X . Is X a finite CW-complex itself? The obstruction lies in
K̃0Z[π1(X )].

• (Kummer-Vandiver conjecture) Denote K the maximal real
subfield of the p-cyclotomic field Q(ζp), and hK its class
number (number of ideal classes). Then, whether p does not
divide hK is still an open question (for more than 150 years!),
and is equivalent to showing that K4n(Z) ≃ 0 for every n ≥ 0.

but also the (solved) Quillen-Lichtenbaum conjecture, and many
others.
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Algebraic K-theory for (higher) categories

Problem
K-groups of rings are notoriously hard to compute and to
understand.

Solution (?): generalize! There is an algebraic K-theory of:
• Abelian categories, even exact categories.
• E∞-ring spectra, even E1-ring spectra.
• Stable ∞-categories.
• Waldhausen categories, i.e. categories equipped with a notion

of cofibrations and weak equivalences.
• Waldhausen ∞-categories.

Claim
Algebraic K-theory of stable ∞-category is a sweet spot.
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The Bass-Heller-Swan formula
Let R be a ring. Can we compute K0(R[t]) from K0(R) ?

The
answer is yes, in normal cases:

Proposition
There is an isomorphism K0(R[t]) ≃ K0(R) ⊕ NK0(R) with
NK0(R) vanishing as soon as R is a normal ring.

The next question is to try and compute K0(R[t, t−1]).

Theorem [Bass-Heller-Swan]
There is an isomorphism

K0(R[t, t−1]) ≃ K0(R) ⊕ K−1(R) ⊕ NK+
0 (R) ⊕ NK−

0 (R)

where the NK+
0 (R) are isomorphic to one anothera, vanishing for

normal rings.
aand to the NK0(R) above
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Negative K-groups

A new group has appeared: K−1(R). This group is by definition
the cokernel of the map K0(R[t]) ⊕ K0(R[t−1]) → K0(R[t, t−1]),
but it does not appear in our definition for algebraic K-theory:
K (R) is a connective spectrum.

Non-connective K-theory
There is a Morita-invariant functor K taking a ring R to a
(generally non-connective) spectrum K(R), such that:

• For n ≥ 0, there are isomorphism Kn(R) ≃ Kn(R), i.e. K (R)
is the connective cover of K(R).

• π−1K(R) ≃ K−1(R) as defined above.
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The "fundamental" theorem of algebraic K-theory

With this new non-connective K-theory functor, there is a neat
Bass-Heller-Swan formula for the entire spectrum:

Fundamental Theorem for non-connective K-theory
We have an equivalence of spectra

K(R[t, t−1]) ≃ K(R) ⊕ ΣK(R) ⊕ NK+(R) ⊕ NK−(R)

Passing to connective covers, one recovers a formula for regular
K-theory with an extra group in π0, coming from the connective
cover of ΣK(R). This is the canonical non-connective delooping of
K-theory that one finds in the classical statements of
Quillen/Grayson.
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"Fundamental" theorems ?

Questions
• Can we have the same for the sweet spot, i.e. stable

∞-categories.
• Can we simplify parts of the proof there ?
• Can we generalize the formula to other invariants related to

K-theory, say THH, TC , KH, etc ... ?

To do this, we have to talk in more details about the properties of
algebraic K-theory of stable ∞-categories.
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Stable ∞-categories

Let C be an ∞-category.

Definition
C is said to be stable if the following are satisfied:

• C is pointed, i.e. has a zero object
• C admits finite limits and finite colimits.
• Given a square in C:

X Y

Z T

the square is cocartesian if and only if it is cartesian.

This is a property of an ∞-category, not a structure.

Victor Saunier The "fundamental" theorem of localizing invariants



Examples of stable ∞-categories

Examples (Motivating)
The ∞-category Sp of spectra, whose homotopy category is the
stable homotopy category, is stable (hence the name).
However, the ∞-category of spaces is not stable. It can be
stabilized and this yields the above category of spectra.

Examples
For every simplicial set K and every stable C, the ∞-category
Fun(K , C) of functors from K to C is also stable.

Examples
If A is abelian, there is a stable ∞-category D(A) whose
homotopy category is the ordinary derived category of A.
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Exact functors

Definition
Let C, D be stable ∞-categories. A functor F : C → D is said to
be exact if it preserves finite limits or finite colimits, in which case
it preserves both.

Denote CatEx
∞ the (non-full!) subcategory of Cat∞ spanned by

stable ∞-categories and exact functors.
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Localization of stable ∞-categories

Let F : C → D be a functor.
Definition
F is a localisation at some class W of arrows in C if for every E ,
precomposition by F induces an equivalence

F ∗ : Fun(D, E) FunW(C, E)≃

F is a left Bousfield localisation if it has a fully-faithful right
adjoint. This condition implies the equivalence above.

For exact functors between stable ∞-categories, localizations are
Verdier quotients.
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Verdier sequences

A Verdier quotient of D by a stable subcategory C is the
localization of D at the arrows whose fiber lies in C.

The induced
localization functor

p : D D⧸C
is exact, and sits in a cofiber sequence of CatEx

∞ :

C D D⧸C
⊂ p

If C is furthermore closed under retracts in D, then the above is
also a fiber sequence. Such sequences are called Verdier sequences.

Claim
Every localization between stable ∞-categories is the localization
at a Verdier quotient. Every fiber-cofiber sequence is a Verdier
sequence.

Victor Saunier The "fundamental" theorem of localizing invariants
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Verdier-localizing invariants

Let E be a presentable stable ∞-category (which will be Sp most
of the time).

Definition
A functor F : CatEx

∞ → E is a Verdier-localizing invariant if it sends
Verdier sequences to fiber sequences.

Examples
Algebraic K-theory K : CatEx

∞ → Sp is Verdier-localizing.
Non-connective K-theory K is also Verdier-localizing.

Examples
Topological Hochschild homology THH is Verdier-localizing and so
is TC , topological cyclic homology.
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Karoubi equivalences

Every stable ∞-category C embeds into an idempotent complete
stable ∞-category.

In fact, there is a "well-behaved" functor Idem such that Idem(C)
is the universal idempotent-complete stable ∞-category under C.
Idem(C) is also known as the Karoubi envelope of C.

Definition
A Karoubi equivalence f : C → D is an exact functor such that
Idem(f ) is an equivalence.

If f : C → D is localization of stable ∞-categories, then Idem(f ) is
almost a localization: it is a localization on its essential image, and
the inclusion of the essential image is a Karoubi-equivalence.
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Karoubi-localizing invariants

Definition
A functor F : CatEx

∞ → E is Karoubi-localizing if it is
Verdier-localizing and inverts Karoubi equivalences.

Examples
K, KH, THH and TC are Karoubi-localizing. However, K is not
Karoubi-localizing. Thomason’s cofinality theorem guarantees that
K0(C) → K0(Idem(C)) is injective but there are instances where it
is not surjective (for instance for C = Spf , the ∞-category of finite
spectra).
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Tensoring with S1

If R is a ring, then one can consider the rings R[t] and R[t, t−1] of
respectively polynomials and Laurent polynomials. There are maps

R[t] −→ R[t, t−1], R[t−1] −→ R[t, t−1]

given by the two possible inclusion of polynomials into Laurent
polynomials which preserve constant polynomials. Note that they
correspond to localizing at {t} or {t−1}.
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Tensoring with S1 (2)

In the higher setting of stable ∞-categories, there is an analogue.
If C is stable, then so is Fun(S1, C): this is the category of objects
of C with an action of Z.
Definition-Proposition
There exists S1 ⊗ C a stable ∞-category with a map C → S1 ⊗ C
inducing an equivalence for every stable D:

FunEx (S1 ⊗ C, D) FunEx (C, Fun(S1, D))≃

We have similar definitions replacing S1 by S1
+ := BN+ and

S1
− := BN− (these are equivalent but they correspond to the two

different identifications of BN in BZ).
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The Projective Line
For a stable ∞-category C, there are two maps

T± : S1
± ⊗ C → S1 ⊗ C

We have the analogue of the case of ordinary rings:

Proposition
T+ and T− are Verdier projections, i.e. localizations at some class
of arrows.

We can consider the following pullback square of stable
∞-categories:

P(C) S1
+ ⊗ C

S1
− ⊗ C S1 ⊗ C

We say that P(C) is the Projective Line of C.
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The Projective Line under a Verdier-localizing invariant

Theorem
If F is a Verdier-localizing invariant, then:

F (P(C)) F (S1
+ ⊗ C)

F (S1
− ⊗ C) F (S1 ⊗ C)

is a cartesian square.

This is follows from the pasting lemma and the stability of Verdier
projections under pullback.
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The ∞-categorical Projective Bundle formula

Suppose C is stable, idempotent complete.

Theorem
For F a Verdier-localizing invariant, we have splittings

F (P(C)) ≃ F (C) ⊕ F (C) (1)
F (S1

± ⊗ C) ≃ F (C) ⊕ N±F (C) (2)

There are versions of (1) for rings and even E∞-rings (and P1(R)
is the projective line scheme), where it is usually called the
Projective Bundle formula.
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The Main Result

By combining the last two results, we get:

Theorem
For F a Verdier-localizing invariant and C stable, idempotent
complete, we have a splitting

F (S1 ⊗ C) ≃ F (C) ⊕ ΣF (C) ⊕ N+F (C) ⊕ N−F (C)

Examples
One can consider Karoubi-localizing F such that N±F vanishes.
These are the stable ∞-categorical version of A1-invariant
functors. For those F , the formula simplifies to

F (S1 ⊗ C) ≃ F (C) ⊕ ΣF (C)
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Consequences

Issue
When C is Perf(R) the stable, idempotent-complete ∞-category of
compact objects of R -Mod, then S1 ⊗ C is not quite
Perf(R[t, t−1]).

However, it is true that Idem(S1 ⊗ Perf(R)) ≃ Perf(R[t, t−1]) ! So
when our invariants are Karoubi-localizing, the formula of the
previous slide computes the correct thing. Hence, the following
formulas are correct

K(R[t, t−1]) ≃ K(R) ⊕ ΣK(R) ⊕ N+K(R) ⊕ N−K(R)
THH(R[t, t−1]) ≃ THH(R) ⊕ ΣTHH(R) ⊕ N+THH(R) ⊕ N−THH(R)

TC(R[t, t−1]) ≃ TC(R) ⊕ ΣTC(R) ⊕ N+TC(R) ⊕ N−TC(R)
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Consequences (2)

Let X be a space and denote A(X ) the non-connective K-theory of
Fun(X , Sp)c , the subcategory of compact objects of Fun(X , Sp).
Then,

A(X × S1) ≃ A(X ) ⊕ ΣA(X ) ⊕ N+A(X ) ⊕ N−A(X )

If we pass to connective covers, we get a (known) formula for
A(X ), Waldhausen’s A-theory functor (the finitely-dominated
version).
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What’s next ?

Question
For an (ordinary) additive category A equipped with a
self-equivalence ϕ : A → A, Lück and Steimle have a formula to
compute the twisted Laurent polynomials Aϕ[t, t−1]. Can it be
upgraded to stable ∞-categories?

Question
A recent 9-author collaboration has developed hermitian K-theory,
with Poincaré ∞-categories taking the place of stable ones. Is
there a Bass-Heller-Swan formula in this context as well?

Question
What about other theorems of algebraic K-theory that are known
in the case of rings or ring spectra (one major candidate would be
Dundas-Goodwillie-McCarthy)?
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Questions ?

Thank you for your attention!
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