The "fundamental" theorem of localizing invariants

Victor Saunier

GdR Théorie de l'homotopie

Octobre 2022 - Nantes

1 Algebraic K-theory

2 Localizing invariants of stable ∞ -categories

3 A formula for Karoubi-localizing invariants

* 3 > < 3</p>

Definition

There is a connective spectrum K(R), called the *algebraic K*-theory spectrum of *R*. The association $R \mapsto K(R)$ is functorial and Morita-invariant.

3.1

Definition

There is a connective spectrum K(R), called the *algebraic K*-theory spectrum of *R*. The association $R \mapsto K(R)$ is functorial and Morita-invariant.

The homotopy groups $K_n(R)$ of K(R) are the *K*-groups of *R*. You may know some of them:

Definition

There is a connective spectrum K(R), called the *algebraic K*-theory spectrum of *R*. The association $R \mapsto K(R)$ is functorial and Morita-invariant.

The homotopy groups $K_n(R)$ of K(R) are the *K*-groups of *R*. You may know some of them:

 K₀(R) is the group completion of the monoid (under ⊕) of isomorphisms class of finite-type projective modules.

Definition

There is a connective spectrum K(R), called the *algebraic K*-theory spectrum of *R*. The association $R \mapsto K(R)$ is functorial and Morita-invariant.

The homotopy groups $K_n(R)$ of K(R) are the *K*-groups of *R*. You may know some of them:

- K₀(R) is the group completion of the monoid (under ⊕) of isomorphisms class of finite-type projective modules.
- $K_1(R)$ is the abelianisation of GL(R), the infinite general linear group.

伺下 イヨト イヨト

Definition

There is a connective spectrum K(R), called the *algebraic K*-theory spectrum of *R*. The association $R \mapsto K(R)$ is functorial and Morita-invariant.

The homotopy groups $K_n(R)$ of K(R) are the *K*-groups of *R*. You may know some of them:

- K₀(R) is the group completion of the monoid (under ⊕) of isomorphisms class of finite-type projective modules.
- $K_1(R)$ is the abelianisation of GL(R), the infinite general linear group.

Many questions about R can be turned into questions about K(R).

・ 同 ト ・ ヨ ト ・ ヨ ト

Two examples of problems which can be formulated via K-theory:

(Wall's finiteness obstruction) Let X be a finitely dominated space, i.e. there is a finite CW-complex Y which retracts onto X. Is X a finite CW-complex itself? The obstruction lies in *K̃*₀ℤ[π₁(X)].

4 3 6 4 3 6

Two examples of problems which can be formulated via K-theory:

- (Wall's finiteness obstruction) Let X be a finitely dominated space, i.e. there is a finite CW-complex Y which retracts onto X. Is X a finite CW-complex itself? The obstruction lies in *K̃*₀ℤ[π₁(X)].
- (Kummer-Vandiver conjecture) Denote K the maximal real subfield of the p-cyclotomic field Q(ζ_p), and h_K its class number (number of ideal classes). Then, whether p does not divide h_K is still an open question (for more than 150 years!), and is equivalent to showing that K_{4n}(Z) ≃ 0 for every n ≥ 0.

• • = • • = •

Two examples of problems which can be formulated via K-theory:

- (Wall's finiteness obstruction) Let X be a finitely dominated space, i.e. there is a finite CW-complex Y which retracts onto X. Is X a finite CW-complex itself? The obstruction lies in *K̃*₀ℤ[π₁(X)].
- (Kummer-Vandiver conjecture) Denote K the maximal real subfield of the p-cyclotomic field Q(ζ_p), and h_K its class number (number of ideal classes). Then, whether p does not divide h_K is still an open question (for more than 150 years!), and is equivalent to showing that K_{4n}(Z) ≃ 0 for every n ≥ 0.
 but also the (solved) Quillen-Lichtenbaum conjecture, and many others.

伺下 イヨト イヨト

Problem

K-groups of rings are notoriously hard to compute and to understand.

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

• Abelian categories, even exact categories.

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

- Abelian categories, even exact categories.
- E_{∞} -ring spectra, even E_1 -ring spectra.

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

- Abelian categories, even exact categories.
- E_{∞} -ring spectra, even E_1 -ring spectra.
- Stable ∞ -categories.

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

- Abelian categories, even exact categories.
- E_{∞} -ring spectra, even E_1 -ring spectra.
- Stable ∞ -categories.
- Waldhausen categories, i.e. categories equipped with a notion of cofibrations and weak equivalences.

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

- Abelian categories, even exact categories.
- E_{∞} -ring spectra, even E_1 -ring spectra.
- Stable ∞ -categories.
- Waldhausen categories, i.e. categories equipped with a notion of cofibrations and weak equivalences.
- Waldhausen ∞ -categories.

4 3 6 4 3

Problem

K-groups of rings are notoriously hard to compute and to understand.

Solution (?): generalize! There is an algebraic K-theory of:

- Abelian categories, even exact categories.
- E_{∞} -ring spectra, even E_1 -ring spectra.
- Stable ∞ -categories.
- Waldhausen categories, i.e. categories equipped with a notion of cofibrations and weak equivalences.
- Waldhausen ∞ -categories.

Claim

Algebraic K-theory of stable ∞ -category is a sweet spot.

Let R be a ring. Can we compute $K_0(R[t])$ from $K_0(R)$?

ヨト イヨト

э

Let R be a ring. Can we compute $K_0(R[t])$ from $K_0(R)$? The answer is yes, in *normal* cases:

Proposition

There is an isomorphism $K_0(R[t]) \simeq K_0(R) \oplus NK_0(R)$ with $NK_0(R)$ vanishing as soon as R is a *normal* ring.

4 3 6 4 3 6

Let R be a ring. Can we compute $K_0(R[t])$ from $K_0(R)$? The answer is yes, in *normal* cases:

Proposition

There is an isomorphism $K_0(R[t]) \simeq K_0(R) \oplus NK_0(R)$ with $NK_0(R)$ vanishing as soon as R is a *normal* ring.

The next question is to try and compute $K_0(R[t, t^{-1}])$.

4 B 6 4 B

Let R be a ring. Can we compute $K_0(R[t])$ from $K_0(R)$? The answer is yes, in *normal* cases:

Proposition

There is an isomorphism $K_0(R[t]) \simeq K_0(R) \oplus NK_0(R)$ with $NK_0(R)$ vanishing as soon as R is a *normal* ring.

The next question is to try and compute $K_0(R[t, t^{-1}])$.

Theorem [Bass-Heller-Swan]

There is an isomorphism

 $\mathcal{K}_0(R[t,t^{-1}]) \simeq \mathcal{K}_0(R) \oplus \mathcal{K}_{-1}(R) \oplus \mathcal{N}\mathcal{K}_0^+(R) \oplus \mathcal{N}\mathcal{K}_0^-(R)$

where the $NK_0^+(R)$ are isomorphic to one another^{*a*}, vanishing for normal rings.

^aand to the $NK_0(R)$ above

A new group has appeared: $K_{-1}(R)$. This group is by definition the cokernel of the map $K_0(R[t]) \oplus K_0(R[t^{-1}]) \to K_0(R[t, t^{-1}])$, but it does not appear in our definition for algebraic K-theory: K(R) is a *connective* spectrum. A new group has appeared: $K_{-1}(R)$. This group is by definition the cokernel of the map $K_0(R[t]) \oplus K_0(R[t^{-1}]) \to K_0(R[t, t^{-1}])$, but it does not appear in our definition for algebraic K-theory: K(R) is a *connective* spectrum.

Non-connective K-theory

There is a Morita-invariant functor \mathbb{K} taking a ring R to a (generally non-connective) spectrum $\mathbb{K}(R)$, such that:

- For n ≥ 0, there are isomorphism K_n(R) ≃ K_n(R), i.e. K(R) is the connective cover of K(R).
- $\pi_{-1}\mathbb{K}(R)\simeq K_{-1}(R)$ as defined above.

伺下 イヨト イヨト

With this new non-connective K-theory functor, there is a neat Bass-Heller-Swan formula for the entire spectrum:

Fundamental Theorem for non-connective K-theory

We have an equivalence of spectra

 $\mathbb{K}(R[t,t^{-1}])\simeq\mathbb{K}(R)\oplus\Sigma\mathbb{K}(R)\oplus N\mathbb{K}_+(R)\oplus N\mathbb{K}_-(R)$

With this new non-connective K-theory functor, there is a neat Bass-Heller-Swan formula for the entire spectrum:

Fundamental Theorem for non-connective K-theory

We have an equivalence of spectra

 $\mathbb{K}(R[t,t^{-1}]) \simeq \mathbb{K}(R) \oplus \Sigma \mathbb{K}(R) \oplus N \mathbb{K}_{+}(R) \oplus N \mathbb{K}_{-}(R)$

Passing to connective covers, one recovers a formula for regular K-theory with an extra group in π_0 , coming from the connective cover of $\Sigma \mathbb{K}(R)$. This is the *canonical non-connective delooping of K-theory* that one finds in the classical statements of Quillen/Grayson.

Questions

- Can we have the same for the *sweet spot*, i.e. stable ∞-categories.
- Can we simplify parts of the proof there ?
- Can we generalize the formula to other invariants related to K-theory, say *THH*, *TC*, *KH*, etc ... ?

To do this, we have to talk in more details about the properties of algebraic K-theory of stable ∞ -categories.

2 Localizing invariants of stable ∞ -categories

3 A formula for Karoubi-localizing invariants

Image: Image:

Let ${\mathcal C}$ be an $\infty\text{-category.}$

Definition

 ${\mathcal C}$ is said to be *stable* if the following are satisfied:

- $\bullet \ \mathcal{C}$ is pointed, i.e. has a zero object
- $\bullet \ \mathcal{C}$ admits finite limits and finite colimits.
- Given a square in \mathcal{C} :

the square is cocartesian if and only if it is cartesian.

This is a property of an ∞ -category, not a structure.

Examples (Motivating)

The ∞ -category Sp of spectra, whose homotopy category is the stable homotopy category, is stable (hence the name). However, the ∞ -category of spaces is not stable. It can be stabilized and this yields the above category of spectra.

Examples (Motivating)

The ∞ -category Sp of spectra, whose homotopy category is the stable homotopy category, is stable (hence the name). However, the ∞ -category of spaces is not stable. It can be stabilized and this yields the above category of spectra.

Examples

For every simplicial set K and every stable C, the ∞ -category Fun(K, C) of functors from K to C is also stable.

Examples (Motivating)

The ∞ -category Sp of spectra, whose homotopy category is the stable homotopy category, is stable (hence the name). However, the ∞ -category of spaces is not stable. It can be stabilized and this yields the above category of spectra.

Examples

For every simplicial set K and every stable C, the ∞ -category Fun(K, C) of functors from K to C is also stable.

Examples

If \mathcal{A} is abelian, there is a stable ∞ -category $D(\mathcal{A})$ whose homotopy category is the ordinary *derived category of* \mathcal{A} .

周 ト イ ヨ ト イ ヨ

Definition

Let \mathcal{C} , \mathcal{D} be stable ∞ -categories. A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be exact if it preserves finite limits or finite colimits, in which case it preserves both.

3 N

Definition

Let \mathcal{C} , \mathcal{D} be stable ∞ -categories. A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be exact if it preserves finite limits or finite colimits, in which case it preserves both.

Denote $\operatorname{Cat}_{\infty}^{E_X}$ the (non-full!) subcategory of $\operatorname{Cat}_{\infty}$ spanned by stable ∞ -categories and exact functors.

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor.

Definition

F is a *localisation* at some class W of arrows in C if for every \mathcal{E} , precomposition by F induces an equivalence

$$F^*: \operatorname{Fun}(\mathcal{D}, \mathcal{E}) \xrightarrow{\simeq} \operatorname{Fun}_{\mathcal{W}}(\mathcal{C}, \mathcal{E})$$

F is a *left Bousfield localisation* if it has a fully-faithful right adjoint. This condition implies the equivalence above.

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor.

Definition

F is a *localisation* at some class W of arrows in C if for every \mathcal{E} , precomposition by F induces an equivalence

$$F^*: \operatorname{Fun}(\mathcal{D}, \mathcal{E}) \xrightarrow{\simeq} \operatorname{Fun}_{\mathcal{W}}(\mathcal{C}, \mathcal{E})$$

F is a *left Bousfield localisation* if it has a fully-faithful right adjoint. This condition implies the equivalence above.

For exact functors between stable ∞ -categories, localizations are *Verdier quotients*.

Verdier sequences

A Verdier quotient of \mathcal{D} by a stable subcategory \mathcal{C} is the localization of \mathcal{D} at the arrows whose fiber lies in \mathcal{C} .

Verdier sequences

A Verdier quotient of $\mathcal D$ by a stable subcategory $\mathcal C$ is the localization of $\mathcal D$ at the arrows whose fiber lies in $\mathcal C.$ The induced localization functor

$$p: \mathcal{D} \longrightarrow \mathcal{D}_{\mathcal{C}}$$

is exact, and sits in a cofiber sequence of $\operatorname{Cat}_{\infty}^{E_X}$:

$$\mathcal{C} \xrightarrow{\ \subset \ } \mathcal{D} \xrightarrow{\ p \ } \mathcal{D}_{\mathcal{C}}$$

Verdier sequences

A Verdier quotient of \mathcal{D} by a stable subcategory \mathcal{C} is the localization of \mathcal{D} at the arrows whose fiber lies in \mathcal{C} . The induced localization functor

$$p: \mathcal{D} \longrightarrow \mathcal{D}_{\mathcal{C}}$$

is exact, and sits in a cofiber sequence of $\operatorname{Cat}_{\infty}^{E_X}$:

$$\mathcal{C} \overset{\subset}{\longrightarrow} \mathcal{D} \overset{p}{\longrightarrow} \overset{\mathcal{D}}{\nearrow}_{\mathcal{C}}$$

If C is furthermore closed under retracts in D, then the above is also a fiber sequence. Such sequences are called *Verdier sequences*.

Claim

Every localization between stable $\infty\mbox{-}categories$ is the localization at a Verdier quotient. Every fiber-cofiber sequence is a Verdier sequence.

Let ${\mathcal E}$ be a presentable stable $\infty\text{-category}$ (which will be Sp most of the time).

Definition

A functor $F : \operatorname{Cat}_{\infty}^{E_X} \to \mathcal{E}$ is a Verdier-localizing invariant if it sends Verdier sequences to fiber sequences. Let ${\mathcal E}$ be a presentable stable $\infty\text{-category}$ (which will be Sp most of the time).

Definition

A functor $F : \operatorname{Cat}_{\infty}^{E_X} \to \mathcal{E}$ is a Verdier-localizing invariant if it sends Verdier sequences to fiber sequences.

Examples

Algebraic K-theory $K : \operatorname{Cat}_{\infty}^{E_X} \to \operatorname{Sp}$ is Verdier-localizing. Non-connective K-theory \mathbb{K} is also Verdier-localizing. Let ${\mathcal E}$ be a presentable stable $\infty\text{-category}$ (which will be Sp most of the time).

Definition

A functor $F : \operatorname{Cat}_{\infty}^{E_X} \to \mathcal{E}$ is a Verdier-localizing invariant if it sends Verdier sequences to fiber sequences.

Examples

Algebraic K-theory $K : \operatorname{Cat}_{\infty}^{E_X} \to \operatorname{Sp}$ is Verdier-localizing. Non-connective K-theory \mathbb{K} is also Verdier-localizing.

Examples

Topological Hochschild homology THH is Verdier-localizing and so is TC, topological cyclic homology.

< ロ > < 同 > < 三 > < 三 >

Every stable $\infty\text{-category}\ \mathcal C$ embeds into an idempotent complete stable $\infty\text{-category}.$

Every stable ∞ -category $\mathcal C$ embeds into an *idempotent complete* stable ∞ -category.

In fact, there is a "well-behaved" functor Idem such that Idem(C) is the universal idempotent-complete stable ∞ -category under C. Idem(C) is also known as the *Karoubi envelope* of C.

Definition

A Karoubi equivalence $f : C \to D$ is an exact functor such that Idem(f) is an equivalence.

Every stable ∞ -category $\mathcal C$ embeds into an *idempotent complete* stable ∞ -category.

In fact, there is a "well-behaved" functor Idem such that Idem(C) is the universal idempotent-complete stable ∞ -category under C. Idem(C) is also known as the *Karoubi envelope* of C.

Definition

A Karoubi equivalence $f : C \to D$ is an exact functor such that Idem(f) is an equivalence.

If $f : C \to D$ is localization of stable ∞ -categories, then Idem(f) is almost a localization: it is a localization on its essential image, and the inclusion of the essential image is a Karoubi-equivalence.

Definition

A functor $F : \operatorname{Cat}_{\infty}^{E_X} \to \mathcal{E}$ is Karoubi-localizing if it is Verdier-localizing and inverts Karoubi equivalences.

Examples

 \mathbb{K} , *KH*, *THH* and *TC* are Karoubi-localizing. However, *K* is not Karoubi-localizing. Thomason's cofinality theorem guarantees that $K_0(\mathcal{C}) \rightarrow K_0(\text{Idem}(\mathcal{C}))$ is injective but there are instances where it is not surjective (for instance for $\mathcal{C} = \text{Sp}^f$, the ∞ -category of finite spectra).

1 Algebraic K-theory

2 Localizing invariants of stable ∞ -categories

3 A formula for Karoubi-localizing invariants

* 3 > < 3</p>

If R is a ring, then one can consider the rings R[t] and $R[t, t^{-1}]$ of respectively polynomials and Laurent polynomials. There are maps

$$R[t] \longrightarrow R[t, t^{-1}], \qquad \qquad R[t^{-1}] \longrightarrow R[t, t^{-1}]$$

given by the two possible inclusion of polynomials into Laurent polynomials which preserve constant polynomials. Note that they correspond to localizing at $\{t\}$ or $\{t^{-1}\}$.

In the higher setting of stable ∞ -categories, there is an analogue. If C is stable, then so is Fun (S^1, C) : this is the category of objects of C with an action of \mathbb{Z} .

Definition-Proposition

There exists $S^1 \otimes C$ a stable ∞ -category with a map $C \to S^1 \otimes C$ inducing an equivalence for every stable \mathcal{D} :

$$\mathsf{Fun}^{\textit{Ex}}(\textit{S}^1 \otimes \mathcal{C}, \mathcal{D}) \stackrel{\simeq}{\longrightarrow} \mathsf{Fun}^{\textit{Ex}}(\mathcal{C}, \mathsf{Fun}(\textit{S}^1, \mathcal{D}))$$

We have similar definitions replacing S^1 by $S^1_+ := B\mathbb{N}_+$ and $S^1_- := B\mathbb{N}_-$ (these are equivalent but they correspond to the two different identifications of $B\mathbb{N}$ in $B\mathbb{Z}$).

• • • • • • •

The Projective Line

For a stable ∞ -category \mathcal{C} , there are two maps

$$T_{\pm}: S^1_{\pm} \otimes \mathcal{C} \to S^1 \otimes \mathcal{C}$$

The Projective Line

For a stable $\infty\text{-category}\ \mathcal{C},$ there are two maps

$$T_{\pm}: S^1_{\pm} \otimes \mathcal{C} o S^1 \otimes \mathcal{C}$$

We have the analogue of the case of ordinary rings:

Proposition

 \mathcal{T}_+ and \mathcal{T}_- are Verdier projections, i.e. localizations at some class of arrows.

The Projective Line

Proposition

For a stable $\infty\text{-}\mathsf{category}\ \mathcal{C},$ there are two maps

$$T_{\pm}: S^1_{\pm} \otimes \mathcal{C} \to S^1 \otimes \mathcal{C}$$

We have the analogue of the case of ordinary rings:

 T_+ and T_- are Verdier projections, i.e. localizations at some class of arrows.

We can consider the following pullback square of stable ∞ -categories:

We say that $\mathbb{P}(\mathcal{C})$ is the *Projective Line* of \mathcal{C}_{\cdot}

Theorem

If F is a Verdier-localizing invariant, then:

is a cartesian square.

This is follows from the pasting lemma and the stability of Verdier projections under pullback.

Suppose C is stable, **idempotent complete**.

Theorem

For F a Verdier-localizing invariant, we have splittings

$$F(\mathbb{P}(\mathcal{C})) \simeq F(\mathcal{C}) \oplus F(\mathcal{C}) \tag{1}$$

$$F(S^{1}_{\pm} \otimes \mathcal{C}) \simeq F(\mathcal{C}) \oplus N_{\pm}F(\mathcal{C})$$
(2)

There are versions of (1) for rings and even E_{∞} -rings (and $\mathbb{P}^1(R)$ is the projective line scheme), where it is usually called the *Projective Bundle formula*.

By combining the last two results, we get:

Theorem

For F a Verdier-localizing invariant and ${\cal C}$ stable, idempotent complete, we have a splitting

$$F(S^1 \otimes \mathcal{C}) \simeq F(\mathcal{C}) \oplus \Sigma F(\mathcal{C}) \oplus N_+ F(\mathcal{C}) \oplus N_- F(\mathcal{C})$$

Examples

One can consider Karoubi-localizing F such that $N_{\pm}F$ vanishes. These are the stable ∞ -categorical version of \mathbb{A}^1 -invariant functors. For those F, the formula simplifies to

$$F(S^1 \otimes \mathcal{C}) \simeq F(\mathcal{C}) \oplus \Sigma F(\mathcal{C})$$

Issue

When C is Perf(R) the stable, idempotent-complete ∞ -category of compact objects of R-Mod, then $S^1 \otimes C$ is not quite $Perf(R[t, t^{-1}])$.

However, it is true that $\operatorname{Idem}(S^1 \otimes \operatorname{Perf}(R)) \simeq \operatorname{Perf}(R[t, t^{-1}])$! So when our invariants are Karoubi-localizing, the formula of the previous slide computes the correct thing. Hence, the following formulas are correct

 $\mathbb{K}(R[t, t^{-1}]) \simeq \mathbb{K}(R) \oplus \Sigma \mathbb{K}(R) \oplus N_{+} \mathbb{K}(R) \oplus N_{-} \mathbb{K}(R)$ $THH(R[t, t^{-1}]) \simeq THH(R) \oplus \Sigma THH(R) \oplus N_{+} THH(R) \oplus N_{-} THH(R)$ $TC(R[t, t^{-1}]) \simeq TC(R) \oplus \Sigma TC(R) \oplus N_{+} TC(R) \oplus N_{-} TC(R)$

• A D • • D • • D • •

Let X be a space and denote $\mathbb{A}(X)$ the non-connective K-theory of Fun $(X, \operatorname{Sp})^c$, the subcategory of compact objects of Fun (X, Sp) . Then,

$$\mathbb{A}(X \times S^1) \simeq \mathbb{A}(X) \oplus \Sigma\mathbb{A}(X) \oplus N_+\mathbb{A}(X) \oplus N_-\mathbb{A}(X)$$

If we pass to connective covers, we get a (known) formula for A(X), Waldhausen's A-theory functor (the finitely-dominated version).

医下子 医

Question

For an (ordinary) additive category \mathcal{A} equipped with a self-equivalence $\phi : \mathcal{A} \to \mathcal{A}$, Lück and Steimle have a formula to compute the twisted Laurent polynomials $\mathcal{A}_{\phi}[t, t^{-1}]$. Can it be upgraded to stable ∞ -categories?

Question

A recent 9-author collaboration has developed hermitian K-theory, with Poincaré ∞ -categories taking the place of stable ones. Is there a Bass-Heller-Swan formula in this context as well?

Question

What about other theorems of algebraic K-theory that are known in the case of rings or ring spectra (one major candidate would be Dundas-Goodwillie-McCarthy)?

イロト イボト イヨト イヨト

э

Thank you for your attention!

• • • • • • •

æ