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Assembly and colimits

Given a functor F : C → D and a diagram Xα in C, there is a map

colimα F (Xα) −→ F (colimα Xα)

comparing the colimit of the F (Xα) and the image of the colimit under
F . Of course, F preserves this colimit iff this map is an equivalence.

Consider a group G , then for every X ∈ C, we can consider the constant
BG-indexed diagram in C with value X . Its colimit is often written
BG ⊗ X , and the map

BG ⊗ F (X ) −→ F (BG ⊗ X )

is the G-assembly map of F at X .
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Assembly in K-theory

In fact, we need not restrict to a group: if K is a space (in the higher
categorical sense), there is again an assembly map

K ⊗ F (X ) −→ F (K ⊗ X )

In fact, the left hand side is uniquely described as the functor in K which
preserves colimits and sends ∗ to F (X ). In particular, if the target of F is
stable, then K 7→ K ⊗ F (X ) is the universal to approximate F by a
homology theory.

The functors for which assembly is interesting usually do not preserve
many colimits:
• Waldhausen’s A-theory A(X ) := K (S[ΩX ]) as a functor S∗ → Sp
• (non-connective) algebraic K-theory K (C), as a functor CatEx → Sp
• L-theory (quadratic, symmetric and many others as we will explain)
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Relevance

Proposition (Bass–Heller–Swan)
Let C be a stable category, then there is a natural splitting

K (S1 ⊗ C) ≃ S1 ⊗ K (C)⊕ N+K (C)⊕ N−K (C)

In fact this holds more generally for localizing invariants.

You might know this formula under a different formulation: for a
spectrum X , S1 ⊗ X ≃ X ⊕ ΣX and if C = Perf(R), then up to
idempotent completion, S1 ⊗ Perf(R) ≃ Perf(R[t, t−1]).

This result also implies a similar splitting for A-theory, by specializing it
to C = Perf(S[ΩX ]).

Here, S1 ≃ BZ, so the above fits in the following picture:

Conjecture (weak form of Farrell–Jones)
Let G be a torsionfree group, then the G-assembly map in K-theory is
split-injective.

This is known for many G , but not in general.

Victor Saunier A model for the assembly map of bordism-invariant functors



Relevance

Proposition (Bass–Heller–Swan)
Let C be a stable category, then there is a natural splitting

K (S1 ⊗ C) ≃ S1 ⊗ K (C)⊕ N+K (C)⊕ N−K (C)

In fact this holds more generally for localizing invariants.

You might know this formula under a different formulation: for a
spectrum X , S1 ⊗ X ≃ X ⊕ ΣX and if C = Perf(R), then up to
idempotent completion, S1 ⊗ Perf(R) ≃ Perf(R[t, t−1]).

This result also implies a similar splitting for A-theory, by specializing it
to C = Perf(S[ΩX ]).

Here, S1 ≃ BZ, so the above fits in the following picture:

Conjecture (weak form of Farrell–Jones)
Let G be a torsionfree group, then the G-assembly map in K-theory is
split-injective.

This is known for many G , but not in general.

Victor Saunier A model for the assembly map of bordism-invariant functors



Relevance

Proposition (Bass–Heller–Swan)
Let C be a stable category, then there is a natural splitting

K (S1 ⊗ C) ≃ S1 ⊗ K (C)⊕ N+K (C)⊕ N−K (C)

In fact this holds more generally for localizing invariants.

You might know this formula under a different formulation: for a
spectrum X , S1 ⊗ X ≃ X ⊕ ΣX and if C = Perf(R), then up to
idempotent completion, S1 ⊗ Perf(R) ≃ Perf(R[t, t−1]).

This result also implies a similar splitting for A-theory, by specializing it
to C = Perf(S[ΩX ]).

Here, S1 ≃ BZ, so the above fits in the following picture:

Conjecture (weak form of Farrell–Jones)
Let G be a torsionfree group, then the G-assembly map in K-theory is
split-injective.

This is known for many G , but not in general.

Victor Saunier A model for the assembly map of bordism-invariant functors



Relevance

Proposition (Bass–Heller–Swan)
Let C be a stable category, then there is a natural splitting

K (S1 ⊗ C) ≃ S1 ⊗ K (C)⊕ N+K (C)⊕ N−K (C)

In fact this holds more generally for localizing invariants.

You might know this formula under a different formulation: for a
spectrum X , S1 ⊗ X ≃ X ⊕ ΣX and if C = Perf(R), then up to
idempotent completion, S1 ⊗ Perf(R) ≃ Perf(R[t, t−1]).

This result also implies a similar splitting for A-theory, by specializing it
to C = Perf(S[ΩX ]).

Here, S1 ≃ BZ, so the above fits in the following picture:

Conjecture (weak form of Farrell–Jones)
Let G be a torsionfree group, then the G-assembly map in K-theory is
split-injective.

This is known for many G , but not in general.
Victor Saunier A model for the assembly map of bordism-invariant functors



Bartels–Efimov–Nikolaus

Because there is a map (−)≃ → K , it is straightforward to produce
elements in the right hand side of the assembly map. The left hand side
is harder to control, because it is not the K-theory of any stable category
a priori.

Enter Efimov: if C is stable, then Ind(C) is in particular a dualizable
object of PrL

Ex.

Theorem (Efimov)

Any localizing invariant uniquely extends to Prdual, the category of
dualizable objects in PrL

Ex and strongly-continuous functors between
them.

In particular, if C is dualizable then so is Shv(X ; C) (but it need not be
compactly-generated, unless C is and X is a profinite space). And
Shv(X ; C) behaves like a “2-categorical cohomology theory”, so that for
nice enough X :

K (Shv(X ; C)) ≃ K (C)X
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But we lost something along the way

There is a way to formally dualise the construction of Shv:

Theorem (Bartels–Efimov–Nikolaus)
There is a map

ĉoShv(X ; C) −→ X ⊗ C ≃ Fun(X , C)

which is a strongly-continuous localisation of dualizable categories, and
yields the assembly map under any localizing invariant.

This is cool because we gained a concrete model for the left hand side,
and we further even got a model for the kernel of the assembly.

However, in the battle, we lost our easy access to elements in K-groups:
for a dualizable C, the best there is a map Cω,≃ → K and there is little
control on the compact objects of a dualizable category (it could very
well be zero).
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Poincaré category

A Poincaré category (C, Ϙ) is a stable category C with duality
D : Cop → C, i.e. D is an equivalence with Dop as its inverse, and an
extra bit of datum, a linear functor Λ : Cop → Sp and a gluing functor

Λ(X ) −→ mapC(X , D(X ))tC2

This is meant to encode which forms one is considering (e.g. quadratic,
symmetric, skew-symmetric).

Note that pulling the gluing functor along the canonical map from
homotopy fixed points yields:

Ϙ(X ) BϘ(X , X )hC2

ΛϘ(X ) BϘ(X , X )tC2

which knows all about the above datum: ΛϘ is the first Goodwillie
derivative and BϘ is the second cross-effect. The duality is the curried
functor (which a priori lands in Ind(C)).
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Poincaré category (2)

A Poincaré functor is an exact functor f : C → D equipped with a natural
transformation η : Ϙ→ Ψ ◦ f op, such that the induced map
f ◦ DϘ =⇒ DΨ ◦ f is an equivalence.

Given a stable category C,

Hyp(C) ≃ (C ⊕ Cop, mapC)

is a Poincaré category, functorial in C, called the hyperbolic category.

There is a similarly defined notion of localizing invariants on Catp, the
category of Poincaré categories and Poincaré functors.

Definition
A localizing invariant E : Catp → E is bordism-invariant if it sends
Hyp(C) to zero.

The main example of such invariants is L-theory, L : Catp → Sp. This
functor captures all of the variants of L-theory all at once: quadratic,
symmetric, etc... by changing the Ϙ. It also allows them to talk to one
another, for instance there is a map (C, Ϙq

D)→ (C, Ϙs
D) which induces the

quadratic to symmetric comparison on L-theory.
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Lagrangian

An isotropic subcategory L of (C, Ϙ) is a coreflexive full subcategory such
that ϘL ≃ 0. In consequence, there is a fully-faithful Hyp(L)→ (C, Ϙ).

The isotropic subcategory L is a Lagrangian if L, D(L) jointly generate
C as a stable category closed under retracts.

Lemma
Let E be bordism-invariant and localizing. Suppose (C, Ϙ) has a
Lagrangian, then

E (C, Ϙ) ≃ 0
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Poincaré tensors

The category Catp admits all limits and colimits, and they are preserved
by the forgetful functor. In particular, given a Poincaré category (C, Ϙ),
the right hand side of the assembly for a space X looks like

(X ⊗ C, X ⊗ p!Ϙ)

where p : C → X ⊗ C is the canonical map of the colimit, p! is the left
Kan extension functor and X ⊗ p!Ϙ is the cotensor taken in the functor
category.

A localizing invariant is a categorification of the passage from C to
K0(C). In particular, to produce the left hand side of the assembly, one
strategy is to imitate the assembly map construction, except one
categorical level higher, in similar fashion to the ĉoShv(X ; C).

Note that if instead of a space K , we had started with a category I, the
colimit of the constant X ∈ C is equivalent to |I| ⊗ X since the constant
functor inverts all arrows and therefore factors through I → |I| ≃ I[all−1].
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Oplax colimits of stable categories

To categorify this idea, we can use that actually CatEx is a 2-category
and admits something called (op)lax colimits. Roughly, oplax colimits are
supposed to be objects with the same universal property as colimits,
except with respect to (op)lax cocones, where all the triangles must now
be given with a non-necessarily invertible transformation (the direction of
which changes lax to oplax).

Proposition
The oplax colimit of a functor F : I → Cat is its cocartesian
unstraightening Un(F ).

In general, even if F lands in CatEx, this unstraightening is not stable.
However, there is a universal way to map to a stable category while
sending each exact sequence in the fibers F (i) to exact sequence. We
call this category UnEx(F ).
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Oplax colimits of hermitian categories

Given a functor F : I → Catp, we might want to try to do the same
thing. We expect that the oplax colimit will be a Poincaré category over
the oplax colimit in stable categories. In particular, we have to produce

Ϙ : UnEx(F )op → Sp

Since Sp is just a 1-category, any oplax cocone business must just be a
regular cocone; in particular, we claim the following:

Proposition (Levin–Nocera–S)
Given a functor F : I → Catp, then the left Kan extensions of
Ϙi : F (i)op → Sp to UnEx(F ) is functorial, and the resulting hermitian
category:

Unh(F ) := (UnEx(F ), colimi(pi)!Ϙi)

is the oplax colimit in Cath, the (larger) category of hermitian category.

Here, the ’hermitian’ adjective is a weakening of the Poincaré, where the
Ϙ is simply supposed to have a bilinear BϘ but no duality associated to it
(and in particular, the functors are not duality preserving).
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Oplax colimits of Poincaré categories

The reason the word hermitian appears is the following:

Warning
The category Unh(F ) need not be Poincaré, even if F is constant.

For instance, for I = ∆1 and F constant equal to some C, the Unh is the
hermitian structure Ϙ(X → Y ) := Ϙ(Y ), whose duality sends X → Y to
0→ D(Y ) and therefore is certainly not an equivalence ...

There is half-a-hope however from the above:

Proposition (Levin–Nocera–S)
Suppose I is a strongly finite category (= finite, enriched in finite spaces)
then the duality on Unh(F ) is always non-degenerate.
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Oplax colimits of Poincaré categories

There is a situation however, where we are saved. Pick K a finite
simplicial complex and consider Face(K )op the opposite of its poset of
faces.

Then, a miracle happens:

Theorem (Levin–Nocera–S)

Let F : Face(K )op → Catp be any functor. Then, Unh(F ) is a Poincaré
category.

Why is there a miracle? Well the shape of the poset of faces of a
simplicial complex is very self-dual: for instance, for ∆1, it is given by

0← (0→ 1)→ 1

A similar picture occurs for ∆n, where the poset is given by TwAr(∆n).
This functor happens to preserve pushouts of simplicial complexes so this
is all we needed to know.
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An model for Unh(F )

In the previous situation, Unh(F ) admits a rather explicit model: its
underlying category is the category of sections of the cartesian fibration
Uncart(F )→ Face(K )op and the Ϙ takes a section, viewed as a system
xi ∈ F (i), and gives colimi Ϙ(xi), which is suitably functorial.

Here it is particularly important to work with strongly finite categories.
This is because sections of Uncart(F )→ Face(K )op is actually the oplax
limit of F , computed in Cat but also in CatEx.

In general, CatEx only has this kind of lax semi-additivity property for
finite diagrams. This is in contrast with PrL

Ex in which for instance,
colimits indexed by spaces coincide with limits indexed by the same
space, and more generally, oplax colimits and oplax limits indexed by a
category coincide. The strong-finiteness is a sufficient condition for this
behaviour to descend to CatEx.
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Oplax colimits of Poincaré categories

Now, don’t get ahead of yourselves:

Warning
Even in the previous situation, the maps F (i)→ Unh(F ) need not be
duality preserving. In particular, Unh(F ) is not the oplax colimit in Catp

since its oplax cocone does not even belong there.

In general, only the maps corresponding to inclusions of 0-simplicies are
duality-preserving; in fact, the inclusion of a k-face actually shifts the
duality by k.
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A model for the source of the assembly

Given a finite simplicial set K , note that the associated space |K | is also
|Face(K )op|. Because oplax colimits are functorial, givem
F : |K | → Catp there is a functor

oplaxcolim
Face(K)op

F −→ oplaxcolim
|K |

F ≃ colim|K | F

which is a priori only a hermitian functor (i.e. it need not preserve the
duality).

Proposition (Levin–Nocera–S)
The kernel of this functor is stable under the duality. Moreover, this
functor is also the cofiber of its fiber, hence a Poincaré functor.

The conclusion comes from the fact that Poincaré categories are closed
under colimits in hermitian ones.
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A model for the source of the assembly

The second part is rather formal: because Face(K )op → |K | is a
localisation, it must be that the induced functor on oplax colimits also is
(roughly because for a functor to descend along the oplax colimit, it
suffices that it inverts the relevant maps in the diagram).

The first part of the above proposition is however more technical. The
core strategy already implements something we have talked about: to
prove that the duality is an equivalence is a local condition. Indeed, it
asks whether the map

X −→ DD(X )

is an equivalence. In particular, it suffices that every X is in the image of
a duality preserving.
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A model for the source of the assembly

But every simplicial complex is glued from ∆n, and this makes oplax
colimits into a 2-categorical homology theory, in the following sense.

Proposition (Levin–Nocera–S)
If L′ = L

∐
K ∆n is a pushout of finite simplicial complexes and

F : Face(L′)op → Catp, then the square

oplaxcolimFace(K)op F oplaxcolimFace(∆n)op F

oplaxcolimFace(L)op F oplaxcolimFace(L′)op F

is a pushout square, whose vertical legs are kernel inclusions.
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A model for the source of the assembly

In particular, this also implies that the kernels maps to one another and
in fact, can be exhausted from the inclusions of ∆n. Hence, we are
reduced to

Lemma
The kernel in the case K = ∆n is stable under the duality.

which is a (technical) computation, but doable nonetheless.

In fact, being careful about the computation, we find more:

Proposition
The kernel in the case K = ∆n admits a Lagrangian.
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A model for the source of the assembly

This last fact has all sorts of cool consequences for bordism-invariants
functors. It means that for K = ∆n, the map

E (oplaxcolim
Face(∆n)op

F ) −→ E (colim|∆n| F ) ≃ F (∗)

is an equivalence, hence the left hand side models the assembly (for a
contractible space).

But, we can reuse the previous magic about the 2-categorical homology
theory: since E is als localizing, this property is stable under pushouts!

Therefore,

E (ϕK ) : E (oplaxcolim
Face(K)op

F ) −→ E (colim|K | F )

is a model of the assembly for all finite simplicial complexes K . In
particular, the left hand side does not depend on the specific simplicial
complex realizing to |K |.
This holds more generally if E preserves filtered colimits.
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A model for the source of the assembly

Theorem (Levin–Nocera–S)
For every bordism-invariant localizing E : Catp → E and every finite
simplicial complex K , the map

E (ϕK ) : E (oplaxcolim
Face(K)op

F ) −→ E (colim|K | F )

canonically identifies with the assembly map. Moreover, its kernel is
E (ker ϕK ) because ϕK was the cofiber of its fiber.

Note that having a Lagrangian is not a property stable under pushout (it
is only stable under Lagrangian-preserving functors), so we have not
proved that L-theory commutes with arbitrary colimits of spaces (which is
false, anyway).

In some easy cases (like S1), the Lagrangians do glue, and so we get a
L-theoretic Bass–Heller–Swan (with even the added benefit that there are
no nil-terms, and we can even twist by duality-preserving automorphisms):

S1 ⊗ L⟨−∞⟩(C, Ϙ) ≃ L⟨−∞⟩(S1 ⊗ (C, Ϙ))
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A model for the source of the assembly

Theorem (Levin–Nocera–S)
For every bordism-invariant localizing E : Catp → E and every finite
simplicial complex K , the map

E (ϕK ) : E (oplaxcolim
Face(K)op

F ) −→ E (colim|K | F )

canonically identifies with the assembly map. Moreover, its kernel is
E (ker ϕK ) because ϕK was the cofiber of its fiber.

Note that having a Lagrangian is not a property stable under pushout (it
is only stable under Lagrangian-preserving functors), so we have not
proved that L-theory commutes with arbitrary colimits of spaces (which is
false, anyway).

In some easy cases (like S1), the Lagrangians do glue, and so we get a
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Perspectives

A few bullets points about the future:
Is there a way to do this for non-necessarily bordism-invariant
functors, without having to do dualizable Poincaré categories?
Is there a way to compute more, non-trivial examples of kernels
vanishing?
Is there a way to deduce some inheritence properties of Farrell–Jones
type statements?

Victor Saunier A model for the assembly map of bordism-invariant functors


	The assembly map of localizing invariants
	Poincaré categories
	The assembly map of Poincaré categories
	A model for the source of the assembly map

