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Abstract
This is the typed notes of a lecture given in Bielefeld in Winter 2025/2026, as a follow-up

to the course Higher categories and algebraic K-theory III taught by Fabian Hebestreit. Their
goal is roughly to explain a modern point of view on THH and slowly build towards to the
relationship with K-theory through trace methods.
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The main character of these notes is THH, topological Hochschild homology, a spectrum which
can be associated to a ring, a ring spectrum, a stable category with even suitable coefficients. THH
is a very rich object: it enjoys an interesting functoriality, has plenty of mysterious extra structure,
is linked with many differents other invariants of interests and comes with a famed history. As
our point of view will be quite modern, we want to recall a few elements of history at the very
beginning.

Before topological Hochschild homology, there was simply Hochschild homology, which we will
denote HHZ. Given a ring R and a R-bimodule M , HHZ(R,M) is traditionally as the Tor-groups
of R and M viewed as modules over R⊗Rop; our higher categorical point of view allows to simply
write

HHZ(R,M) := R⊗L
Z M

where for the first and last time, we added a superscript L to insist on the fact that this tensor is
derived, that is, taken in the presentable stable category D(Z) of derived Z-modules which we will
simply denote Mod(Z), keeping in with modern fashion.

The name comes from Hochschild, who introduced it in a paper as the homology of an explicit
complex (the so-called Hochschild complex). In modern terms, it is obtained via the Dold-Kan
correspondence from the following simplicial object:

M ⊗R⊗n ... M ⊗R M

using the R-linear multiplication map on M on the kth-component. Note in particular that
π0 HHZ(R,M) ≃ R/[R,M ], and the canonical map tr : Proj(R)≃ → R/[R,R] factors through
K0(R), because it is in particular additive. In fact, the trace map lifts to the whole spectrum, to
something called the Dennis trace map:

K(R) −→ HHZ(R,R)

Even for non-K-theorists, Hochschild homology is quite an interesting object. For a smooth com-
mutative algebra A over a field k of characteristic zero, πn HHZ(A/k,A/k) coincides with the
Kähler differentials ΩnA/k, and for general non-smooth A, receives at least a comparison map.

It also comes with an action of the circle S1, related to the de Rham differentials ΩnA/k → Ωn+1
A/k

(we refer to Matthew Mororw’s notes for more details in this direction). This S1-action only exist
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when the bimodule is the ring itself, and can be understood from the perspective of cyclic objects,
as the geometric realization of cyclic object carries canonically such an action.

Taking homotopy fixed points and the Tate cohomology (in the Z-linear world) for the S1-
action yields spectra called (negative) cyclic homology HC− and HP. There is a map HC− → HP
whose fiber we call HC, the cyclic homology — traditionally, we should incorporate a shift because
the norm map for S1 has a shift (see Corollary I.4.3 of [NS17]):

Σ(−)hS1 (−)hS1 (−)tS1NmS1

so that HC coincides with homotopy orbits for the S1-action but this introduce an annoying shift
in the notation everywhere else. These invariants were discovered first by Connes and Tsygan,
without quite realizing the S1-action at first, and it is under Connes’ impulse that the cyclic
category was introduced to formalize this action and reinterpret the earlier construction in this
framework.

The trace map for HHZ is not very interesting because Hochschild homology is often far too
simple to tell interesting things in K-theory: for instance there is no higher Hochschild homology
for Z so this map loses the information on higher K-groups of Z, and similarly for Fp, K(Fp) is in
odd degrees and HHZ(Fp) is even. However, this trace map is S1-equivariant for the trivial action
on K-theory. In particular, it lifts to a map K → HC− and rationally, it also vanishes on HP
hence lifts to K ⊗Q → HC ⊗Q. This refined cyclic trace map is actually able to capture more on
K-theory. A result of Goodwillie [Goo86] states that if R → S is surjective with nilpotent kernel,
then

fib(K(R) → K(S)) fib(HC(R) → HC(S))

is a rational equivalence (i.e. an equivalence after tensoring with Q). This is quite a striking re-
sult, as computations in K-theory are really hard, whereas HC is a manageable object to compute.
Unfortunately, it just breaks down away from characteristic zero. This is where THH enters the
story.

The insight, due to Goodwillie and Waldhausen, is that K-theory, unlike HH, is not really a
"linear" object, e.g. K(Fp) is not a Fp-module. It mostly lives over the initial (non-zero) ring ...
but this is not(!) Z in homotopy theory, but the sphere spectrum S. They wondered if there was
a "topological" refinement of HH (in the sense that it understood more than just π0S ≃ Z but the
topology above) and this replacement should make the statements hold integrally.

In fact, it was known that stable K-theory, the invariant obtained from K-theory by forcefully
adding a dependence in the bimodule variable via the square-zero extension K(R ⊕ M) and then
forcing it to be M -linear, was rationally Hochschild homology and it was expected that the integral
object was this topological Hochschild homology, a conjecture that made it into Goodwillie’s 1990
ICM address.

Of course, this predates more higher categorical technology so it took Bökstedt some amount
of effort to define properly THH, and study the extra structure — with Hsiang and Madsen in
[BHM93], they described that not only did THH(R) have a S1-action, it also had a cyclotomic
structure which in modern terms we would describe as S1-equivariant maps

ϕp : THH(R) −→ THH(R)tCp

Using this structure, one can form topological version of the periodic and negative theories we
introduced earlier, namely we let TC−(R) := THH(R)hS1 , TP(R) := THH(R)tS1 , but the correct
replacement of HC actually involves the cyclotomic structure. In formula, following the Nikolaus–
Scholze approach of [NS17], one lets:

TC(R) := Eq

 THH(R)hS1 ∏
p prime

(THH(R)tCp)hS1can

(ϕhS1
p )


The resulting invariant is called topological cyclic homology. About at the same time, Dundas–
McCarthy proved in [DM94] that THH was indeed stable K-theory for connective rings and con-
nective bimodules, and after some more efforts, they produced an integral version of Goodwillie’s
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theorem, namely that if R → S is map of connective ring spectra such that on π0, it is surjective
with nilpotent kernel, then

fib(K(R) → K(S)) fib(TC(R) → TC(S))≃

is an equivalence. The proof of this result is quite technical, and relies on both various simpli-
cial comparisons and the calculus of functors of Goodwillie — something that Goodwillie had
already envisioned for his result in [Goo86] even if he did not use it in the end. This result is par-
ticularly key to compute K-theory of more complicated rings, like Z/pnZ when n ≥ 2, see [AKN24].

The goal of this course, or what we want to achieve at the end of multiple courses following one
another, is to explain this result, and the word has been italicized because we do not simply want
to give a presentation of the proof with minor modern improvement but truly a different treatment
of it, which follows the ideas of the series of papers [HNS24, HNRS25a, HNRS25b] — which are
also currently not all been publicly released.

There are two major differences we want to implement: the first is to move away from rings,
or even ring spectra and try to understand this story at the level of stable categories, sometimes
idempotent-complete or even large dualizable following insights of [Efi24]. In K-theory, this has
always been somewhat standard ever since Quillen’s seminal work on higher algebraic K-theory
[Qui73] but references for THH of stable categories are few and far between. We claim that done
correctly, this will allow, just as in K-theory, to turn THH from an object realized by a certain
construction and the structure therein inherited from special properties of this construction, into
an object having a universal property and us being able to prove central features of THH via the
study of the often simpler property.

In THH, unlike in K-theory, it is central to implement this with coefficients. These coefficients,
which generalize bimodules over a ring, are bi-exact functors Cop × C → Sp. We will also explain
why these are naturally the "coefficients of a linear theory" over CatEx — by this we mean functors
F (C,−) where the blank variable is colimit-preserving or at least exact — by identifying them as
C varies with the category TCatEx, the tangent bundle of CatEx which is the abstract category of
coefficients of linear theories over CatEx.

In this world, we will furnish a universal property for THH, which will use that THH(C,M) is
linear in the M -variable and the other key feature of THH we have not mentioned: its invariance
under cyclic permutations. More precisely if M is a (C,D)-bimodule and N a (D, C)-bimodule,
then there is an equivalence:

THH(C,M ⊗D N) ≃ THH(C, N ⊗D M)

This cyclic invariance is one of the defining feature of the trace. The reader fond of linear algebra
might know for instance that a linear form f : Mn(R) → R which has the cyclic invariance is
necessarily a multiple of the trace, namely f(−) = f(E1) tr(−).

The notion of trace is one that can be defined extremely generally. We will show that THH
is a trace, in the category PrL

Ex of (large) presentable stable categories, which will take us into a
expository panorama of large categories in the higher world. In fact, following Ramzi in his thesis,
we will show that the uniqueness characterization of the trace lifts to TCatEx, namely the functor

ev1 : Funcyc,fbw−L(TCatEx, E) E

which evaluates at the unit of TCatEx a cyclic-invariant, colimit-preserving in the coefficients,
functor to a presentable stable E , is an equivalence with inverse X 7→ X ⊗ THH.

In fact, there is a refinement of this story that is central to trace methods in K-theory. Let us
first recall some linear algebra: given a real matrix M over R, one can compute the whole Taylor
tower of det(I + tM). In fact, it is even easier to express after passage to the logarithm:

ln det(I + tM) =
∑
n≥1

(−1)n+1

n
tr(Mn)tn

We claimed that THH was a refinement of the trace and our refinement of ln det(I + tM) is the
fiber Kcyc(C,M) := fib(K(C ⊕M) → K(C)) where C ⊕M is a categorical version of the square-zero
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extension, details of which we won’t go into now. Note that as the name suggest, Kcyc has the
cyclic invariance of the trace (in fact, this is also true of det(I +M) and is known under the name
of Weinstein-Aronszajn identity). In particular, forcefully imposing cyclic K-theory to commute
with colimits in the M variable will give a point in Funcyc,fbw−L(TCatEx, E), i.e. this derivative is
of the form X ⊗ THH and X ≃ S by a previously mentioned result of Dundas-McCarthy.

More generally, one can show that a n-excisive, finitary, additive, cyclic invariant F : TCatEx →
E promotes to n-truncated polygonic objects in E , i.e. that one can record functorially the data
F (C,M⊗k) for 1 ≤ k ≤ n and they are related by maps

ϕk,l : F (C,M⊗k) −→ F (C,M⊗kl)τCl

which are Ck-invariant and exist for kl ≤ n. The target is the proper Tate construction, i.e. the
Tate construction with respect to the family of proper subgroups of Cl instead of the usual (which
is with respect to the trivial family of subgroups). This provides a functor

Funcyc,fbw−nexc,add,ω(TCatEx, E) Pgc≤n(E)

which evaluates at the unit of TCatEx the refined functor valued in polygonic objects. The extra
hypotheses (finitary, additive) are precisely added so that this functor is still an equivalence. The
inverse is given in formula by X 7→ TRn(X ⊗ THH(−)) where the tensor product is using that
Pgc≤n(E) is tensored over Pgc≤n(Sp), that THH admits such a structure and TRn : Pgc≤n(E) → E
is the right adjoint of the trivial functor.

In particular, TRn is trying to glue back the extra data supplied by the polygonic spectra, in
a way not too dissimilar to truncating the sum of traces in the Taylor tower of ln det(I + tM). In
fact, taking the n-excisive approximation of cyclic K-theory gives a functor TCatEx → Sp with
all of the extra properties which coincides with TRn(THH), i.e. up to some extension problems
which mean we cannot write a direct sum, the formula for ln det(I + tM) holds also in the world
of stable categories with coefficients.

In fact, and at least for the case of square-zero extensions, the Dundas-Goodwillie-McCarthy
theorem can be understood as a phenomenon of both cyclic K-theory and cyclic TC converging to
the limit of their Taylor tower, which also happen to coincide.

Acknowledgements. These notes have (already!) benefited from the participants of this
course. Deserving of a special mention are Fabian Hebestreit, Claudius Heyer for many helpful
questions and remarks as well as spotting mistakes, including on the proof of Lemma 1.1.5. I also
want to thank Manuel Hoff for many other particularly insightful questions.

1 How to tame your large category
Large categories can be scary. The goal of this section is to give the reader some tools to

turn their large, smelly, hirsute category into a well-behaved, groomed and all-together presentable
category.

1.1 The amazing category of spaces of homotopy-types of anima of groupoids
S

Let us begin by a example, the poster child of a nice, large category: the category S of what
we will call spaces or groupoids but feel free to use any other word you prefer, like anima or
homotopy-type. The category S is the full subcategory of Cat spanned by those categories where
every arrow is invertible.

Proposition 1.1.1 The inclusion S → Cat admits both a left and a right adjoint. The former
is denoted | · |, and computed by forming the localization at all arrows and the latter, denoted
(−)≃, is obtained as the wide subcategory spanned by invertible arrows.

In particular, the above provides a rather robust way of computing colimits and limits in S,
since one can use the machinery developed for categories. We recall the following statement, which
is paramount to compute colimits of categories and was proven in Fabian’s earlier lecture.
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Lemma 1.1.2 Let F : C → Cat and denote Un(F ) → C the cocartesian unstraightening of F .
Then, colimF is the localisation of Un(F ) at the cocartesian edges.

As a sanity check, remark that if F is space-valued, then every arrow in Un(F ) factors as a
cocartesian edge followed by an equivalence, so colimF is indeed a space.

To compute limits in Cat, one must take the category of sections of the unstraightening of
a functor instead, and then take the full subcategory spanned by those γ such that for every
α : i → j, the induced map F (α)(γ(i)) → γ(j) is an equivalence (or the other way around,
depending of whether one takes the cocartesian or the cartesian unstraightening). The reader who
is not familiar with these ideas is invited to try to compute for instance pullbacks of categories
this way, as we will often use the concreteness of this construction.

Corollary 1.1.3 The category S is complete and cocomplete.

Let us further analyse colimits in S:

Proposition 1.1.4 Every object in S is a colimit of ∗. In fact, S is freely generated under colimits,
in the sense that the inclusion i : {∗} → S induces an equivalence

i∗ : FunL(S, C) Fun(∗, C) ≃ C≃

for every cocomplete C, where FunL denotes the full subcategory of colimit-preserving functors.

Proof. Using Lemma 1.1.2, the first claim is immediate as any X ∈ S is also the unstraightening
of the associated functor cst(∗) : X → S of the constant functor equal to ∗.

Let us also include a more "topological" explanation. Recall that up to weak equivalence, ev-
ery (nice-enough) topological space is a CW-complex, with possibly infinitely many cells in each
dimension. In particular, each cell is built out of spheres Sn := ΣnS0 where S0 := {∗}

∐
{∗} and

disks which are contractible i.e. homotopic to a point. Since the gluing in CW-complexes happens
along cofibrations, any presentation of a CW-complex gives rises to a colimit-presentation of the
associated homotopy type.

We now prove that i is an equivalence. First recall from say [Lur08, Proposition 4.3.3.7] that

i∗ : Fun(S, C) Fun(∗, C) ≃ C≃

has a left adjoint i! which is fully-faithful and given by the left Kan extension functor. Unraveling
the formula for left Kan extension, for a point A : ∗ → C, i!A is the functor described pointwise by

X 7→ colim
p:∗→X

A(∗)

which we will often write X ⊗A(∗). This colimit does indeed exist since C is cocomplete and i! is
fully-faithful because i is (see §4.3.2 of [Lur08]). Because colimits commute with other colimit or
more generally, thanks to the lemma below, this adjoint lands in the full subcategory FunL(S, C)
and therefore the whole adjunction descends.

In particular, as the adjoint of a fully-faithful functor, i∗ is a localisation, namely at the
collection of arrow W := {i!i∗(F ) −→ F} — by this, we mean that any functor Φ which inverts
those arrows must factor essentially uniquely through i∗: this is obvious since the collection of
arrows gives the factorization (Φ◦ i!)◦ i∗. Now notice that i∗ is conservative: if F → G is a natural
transformation of colimit-preserving functors S → C such that F (∗) → G(∗) is an equivalence,
we claim that F (X) → G(X) is also always an equivalence. This follows easily from choosing a
presentation of X as a colimit of ∗ which exists by the first part.

To conclude, we remark that a conservative localisation is necessarily a localisation at no non-
trivial arrows (or directly that a functor which is conservative and has a fully-faithful adjoint is an
equivalence from the triangle identities), hence an equivalence.

If C is a category, we write P(C) for the category Fun(Cop,S) of presheaves and j : C → P(C)
for the Yoneda embedding. We used the following Lemma in the above proof: The order is fucked

5



Lemma 1.1.5 Let F : C → D be a functor with target a cocomplete category, and let j : C → P(C)
be the Yoneda embedding. Then, the functor j!F : P(C) → D preserves colimits.

Proof. We follow roughly Theorem 8.4.3.5 in [Lur18, Tag 03WH]. Since we can test along map-
ping spaces (i.e. it suffices to show that Map(j!F (−), X) sends colimits to limits), we reduce
without loss of generality to the case where D = Sop.

Note that (j!)op identifies with the functor which right Kan extend along jop, which is just the
Yoneda embedding of Cop. Under this identification, we have to justify that this functor restricts
to

Fun(C,Sop)op ≃ Fun(Cop,S) −→ FunR(P(C)op,S) ≃ FunL(P(C),Sop)

i.e. that if ϕ : Cop → S is a presheaf, then j∗F sends colimits to limits. But by the Yoneda lemma,
there is an equivalence

j∗F ≃ Nat(−, F )

since both sides have the same universal property.

A different proof of this claim is to remark that j!F : P(C) → D has a right adjoint given by

RF : X ∈ D 7−→ MapD(F (−), X) ∈ P(C)

which can be checked by the local criterion for adjunctions.

In fact, the proof of Proposition 1.1.4 generalizes to the following:

Proposition 1.1.6 Let D be a cocomplete category and C a small category, then, restriction along
the Yoneda lemma induces an equivalence:

j∗ : FunL(P(C),D) Fun(C,D)≃

We say that P(C) is freely generated by C under colimits.

Proof. Since D has small colimits, j∗ has a left adjoint j! given by left Kan extension along
j, which indeed lands in colimit-preserving functor and is fully-faithful since the Yoneda lemma
guarantees that j is fully-faithful. Hence, as in Proposition 1.1.4, j∗ is a localisation and it suffices
to check that it is conservative and by similar arguments, this reduces to the fact that every
ϕ : Cop → S is a colimit of representable functors.

Indeed, there is a map of spaces, natural in X, which we can obtain by the evaluation of the
counit of the above adjunction for the functor id : P(C) → P(C),

colim
j(Y )→ϕ

MapC(X,Y ) −→ ϕ(X)

We claim this map is an equivalence. Note that this colimit is indexed by P(C)/ϕ ×P(C) C which
by the Yoneda lemma, corresponds to the cartesian unstraightening of the functor ϕ : Cop → S.
But the functor Map(X, p(−)) : Uncart(ϕ) → S factors through the projection p : Uncart(ϕ) → C.

We can use Lemma 1.1.2 to compute this colimit. The cocartesian unstraightening of Map(X, p(−))
is given by CX/ ×C Uncart(ϕ); this category receives a map from ϕ(X) thanks to the commutative
diagram:

ϕ(X) CX/

Uncart(ϕ) C

cst(idX )

⊂

Now, ϕ(X) is a space so it suffices to argue that ϕ(X) → CX/ ×C Uncart(ϕ) is a weak homotopy
equivalence. This follows from the fact that this functor has an adjoint, which we can describe
as sending (f : X → Y, y ∈ ϕ(Y )) to the ϕ(f)(y) ∈ ϕ(X) — this defines a left adjoint because
(idX : X → X,x ∈ ϕ(X)) is initial in each slice. This concludes.

In particular in the proof, we obtained:
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Corollary 1.1.7 Every presheaf is a colimit of representable presheaves, i.e. the image of j
generates P(C) under colimits.

We now turn to:
Definition 1.1.8 A finite space is an object X ∈ S which can be obtained as a finite colimit of ∗,
i.e. in the smallest full subcategory of S closed under coproducts and pushouts and containing
the point.

Note that it is hard to not be self-referential in defining the finiteness notion. The above is not
but it was implemented the fact that iterated coproducts and pushouts produce all finite diagrams,
which one might want as a property and not a definition.

An equivalent definition is that a category C is finite if and only if there exists a simplicial set
weakly-equivalent to C with finitely many non-degenerate simplices. It holds that the category
of finite categories is the smallest closed under pushouts and coproducts and containing both ∗
and {0 → 1}. Note that since S → Cat preserves colimits, finite spaces are also legitimate finite
categories and they span the further subcategory which is only generated by ∗; in particular, finite
spaces are therefore equivalently those who can be modelled by Kan complexes with finitely many
non-degenerate simplices and those obtained by finitely many pushouts and coproducts out of ∗.

We now want to explain what ones needs to do to recover the whole category S from its finite
objects.

Definition 1.1.9 A diagram category I is called filtered if for every finite category C, the diagonal
functor cst : I → Fun(C, I) sending i to the constant functor C → I with value i is cofinal.

Differently stated thanks to Quillen’s Theorem A [Lur08, Theorem 4.1.3.1], cst : I → Fun(C, I)
is cofinal if for every f : C → I, the category of diagrams Fun(C, I)f/ ×Fun(C,I) I, whose objects
are natural transformations {f −→ cst(i)} and maps are induced by maps i → j in I making the
associated diagrams commute, is weakly contractible.
■ Example 1.1.10 Right adjoint functors are always cofinal by virtue of the categories required to
be weakly contractible having an initial object, hence categories with finite colimits are filtered. ■

Remark 1.1.11 Actually, it suffices that each Fun(C, I)f/ ×Fun(C,I) I is non-empty for it to be
weakly contractible (see Proposition 9.1.1.18/Tag 02PJ of [Lur18]).

In particular, since cofinal maps are weak equivalences, I is non-empty using the case C = ∅.
Moreover, using the case of finite sets, it follows that one can find a cone point for every pair of
objects of I as well as an equalizing morphism for any two pair of morphisms. In particular, filtered
1-categories are filtered in the higher sense as well.

Writing a space as the filtered colimit of a finite skeleta, we get:

Corollary 1.1.12 Every object X ∈ S is a filtered colimit of finite spaces.

More is actually true, as we will soon show, but first let us introduce another notion, which we
will quickly relate to finiteness:

Definition 1.1.13 A space X is compact if the functor Map(X,−) : S → S commutes with
filtered colimits.

■ Example 1.1.14 The empty space ∅ is compact. The point ∗ is compact. ■

In fact, it is possible to recognize filtered categories by how the colimit functor valued in S
behaves:

Proposition 1.1.15 In S, filtered colimits commute with finite limits. In particular, finite spaces
are compact.

Proof. Let us explain quickly the second part: as a functor in X, Map(X,−) sends finite colimits
to finite limits. In particular, a finite colimit of compact objects stays compact (note that this
actually holds for any category C, as it only uses the commutation at the target). This concludes
using the previous example.
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For any finite diagram I, any filtered J and any functor X : I × J → S, there is a natural map

η : colim
j∈J

lim
i∈I

X(i, j) −→ lim
i∈I

colim
j∈J

X(i, j)

and we have to check it is an equivalence. Note that we can reduce to the case where the finite
limit is a pullback or terminal. The latter case is straightforward by virtue of filtered categories
being contractible.

We will not give a proof for the case of pullbacks, but let us sketch a strategy. Because we
have access to particularly explicit descriptions in the case of sets, it is easier to check that this
property holds there. One strategy, which is the one of [Lur08], is therefore to push this fact
through to nice topological spaces and then through the localisation, see for instance [Lur08,
Proposition 5.3.3.3]. Another way of presenting this idea is through [Lur18, Tag 05XW], which is
less model-dependant.

This makes S compactly-generated, i.e. every space is a filtered colimit of compact spaces; we
will return to this property later. In a different direction, let us also say that this commutation
property of filtered colimits is an equivalent characterization of filtered diagrams:

Corollary 1.1.16 A category J is filtered if and only if the functor colimJ : Fun(J,S) → S
preserves finite limits.

Proof. Given the above, we are reduced to prove that if colimJ preserves finite limits, then
the functor cst∗ : J → Fun(X,J) is cofinal for every finite category K. As we explained earlier,
it suffices to check that for every F : K → J , the category Fun(K,J)F/ ×Fun(K,J) J is weakly
contractible. Another description of this category is the unstraightening of the functor j ∈ J 7→
Nat(F, cst(i)) ≃ limk∈Kop Map(F (k), j).

Now, since Kop is again finite, we know that

η : colim
j∈J

lim
k∈Kop

Map(F (k), j) −→ lim
k∈Kop

colim
j∈J

Map(F (k), j)

is an equivalence. In particular, the left hand side is also the localisation of Fun(K,J)F/×Fun(K,J)J
at the cocartesian arrows by Lemma 1.1.2, which we precisely want to show is equivalent to a point.

To conclude, it suffices to remark that colimj∈J Map(x, j) is always contractible for any x ∈ J .
Indeed, Map(x,−) is classified by the cocartesian fibration Jx/ → J and Jx/ has an initial object,
hence becomes contractible when inverting all its cocartesian edges.

Let us also include a more pedestrian way of proving the last claim: note that there is a point in
each colimj∈J Map(F (k), j) induced by idF (k) : F (k) → F (k). These lift to a point in the limit over
Kop by functoriality and therefore we have a point X ∈ colimj∈J limk∈Kop Map(F (k),−). In conse-
quence, since J is filtered and ∗ is compact, there is some j ∈ J such thatX ∈ limk∈Kop Map(F (k), j)
and using the projection maps of the limits, this endows j with the structure of a cone point to F ,
i.e. there is a map F → cst(j). In particular, we have found our category to be non-empty. Being
more careful we could show that it is connected, and so forth to get the result. This precisely what
the unstraightening captures in a rigorous manner.

Corollary 1.1.17 An object X ∈ S is compact if and only if it is a retract of a finite space.

Proof. Compact objects are closed under retracts: indeed if X is compact and A is a retract of
X, then there is a diagram:

colimi∈I Map(A,Zi) Map(A, colimi∈I Zi)

colimi∈I Map(X,Zi) Map(X, colimi∈I Zi)

colimi∈I Map(A,Zi) Map(A, colimi∈I Zi)

≃
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which exhibits the colimit-comparison map of A as a retract of an equivalence, hence an equivalence
again.

Now, given a compact space X, write X ≃ colimi∈I Xi with I filtered and the Xi finite. Then,
idX : X −→ X ≃ colimi∈I Xi must factor through one of the Xi. This exhibits X as a retract of
Xi which concludes.

Warning 1.1.18 Retracts of finite spaces need not be finite again. In general, retracts of finite
spaces are called finitely-dominated. A Theorem of Wall, called Wall’s finiteness obstruction,
and related to Thomason’s classification theorem shows that for a finitely-dominated space X,
there is a class in K̃0(S[ΩX]) which vanishes if and only if X is finite.

Corollary 1.1.12 admits the following strengthening; in fact let us note that even if we present
the result and the proof for S, it holds mutatis mutandis when replacing S by P(C) for some small
C and Sfin by the full subcategory of P(C) containing the image of the Yoneda and stable under
finite colimits.

Proposition 1.1.19 Suppose C has filtered-colimits, and write i : Sfin → S for the inclusion of
the full subcategory spanned by finite spaces. Then,

i∗ : Funω(S, C) Fun(Sfin, C)≃

is an equivalence, where the superscript ω denotes the full subcategory of finitary, i.e. filtered-
colimit preserving functors. Its inverse is given by left Kan extension along i.

Proof. By Corollary 1.1.12, the above functor is conservative. We check that it has a left
adjoint which is fully-faithful. In fact, we claim that this left adjoint is simply given by left Kan
extension along i, which is automatically fully-faithful since i is. This follows from checking that
if f : Sfin → C is any functor, then i!F : S → C preserves filtered colimits.

We remark that the functor j!i : Fun((Sfin)op,S) → S, obtained by left Kan extending i along
the Yoneda embedding of Sfin, has a filtered-colimit preserving right adjoint. This right adjoint is
given by the formula

X ∈ S 7−→ map(i(−), X) ∈ Fun((Sfin)op,S)

Note that filtered colimits in Fun((Sfin)op,S) are computed pointwise so that the above formula
shows the right adjoint commutes with filtered colimits precisely because finite spaces are compact
in S by Proposition 1.1.15.

Now note that i ≃ j!i ◦ j by fully-faithfulness of the Yoneda embedding j, so that we can
perform the left Kan extension in two steps: first do j! and then (j!i)! which is equivalently given
by precomposition along the previous right adjoint. In particular, to conclude it suffices to check
that j! lands in filtered-colimit preserving functors — this follows from Lemma 1.1.5.

One can do a version of the above adapted to a regular cardinal κ ≥ ω.
Definition 1.1.20 A category is said to be κ-small if it is given by a simplicial set with a κ-small
set of non-degenerate simplices.

The dependence in κ is as follows: if κ ≤ λ, then every κ-small category is in particular λ-small.
Definition 1.1.21 A category J is said to be κ-filtered if for every κ-small category C, the functor
cst : J → Fun(C, J) is cofinal.

It follows from the above that the dependency in κ is that if κ ≤ λ, then every κ-small
filtered category is λ-filtered. In particular, preserving λ-filtered colimits is a weaker condition
that preserving κ-filtered ones.

Proposition 1.1.22 In S, κ-filtered colimits commute with κ-small limits. Moreover, a category
J is κ-filtered if and only if colimJ : Fun(J,S) → S preserves κ-small limits.

Proof. Recall that a functor preserves κ-small limits if it preserves κ-small products and pull-
backs. In particular, in light of Proposition 1.1.15, the first claim reduces to proving that κ-filtered
colimits commute with κ-small products of spaces.
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By Proposition 1.1.15, all the spheres Sn are compact; moreover, π0 : S → Set preserves
colimits and arbitrary products1. Since κ-filtered colimits are in particular filtered, this reduces
the claim to a purely set-theoretical one:

colim
J

∏
k∈K

Xk,j −→
∏
k∈K

colim
J

Xk,j

for X : J ×K → Set (with K discrete). This is true and checkable by hand.

In particular, this argument gives one direction of the claimed equivalence and we can run the
same proof as in Corollary 1.1.16 (which we will explain later in its correct generality) to get the
other implication.

Definition 1.1.23 An object X ∈ S is κ-compact if and only if Map(X,−) : S → S preserves
κ-filtered colimits.

Remark 1.1.24 Unlike in the case κ = ω, if κ is uncountable, a space is κ-compact if and only if
it is κ-small. The proof starts in the same way: every κ-compact space is a retract of a κ-small
space by the same arguments as Corollary 1.1.17, but splitting a retract is a countable colimit
since Idem is countably small, hence κ-small spaces are stable under retracts, which concludes.

We also have the following generalization of Proposition 1.1.19:

Proposition 1.1.25 Write iκ : Sκ for the inclusion of full subcategory of κ-small spaces. Suppose
C has κ-filtered colimits, then,

i∗κ : Funκ(S, C) Fun(Sκ, C)≃

is an equivalence, where the superscript κ denotes the full subcategory of κ-finitary, i.e. κ-
filtered colimit preserving functors. Its inverse is given by left Kan extension along i.

Proof. We will prove a more general statement in the next section, but the reader is encouraged
to adapt the arguments of Proposition 1.1.19.

The above was a strengthening of the filteredness conditions, but one can also weaken the
condition of being filtered as follows:

Definition 1.1.26 A category I is sifted if the functor cst : I → Fun(X, I) is cofinal for every
finite set X.

■ Example 1.1.27 Every filtered category is sifted. It is a well-known fact that ∆op → ∆op × ∆op

is cofinal (see [Lur18, Tag 02QP], or play the combinatorical game through Quillen’s Theorem A
yourself) and since ∆ is non-empty, ∆op is sifted. Note that it is not filtered in general. ■

It holds that a functor preserves sifted colimits if and only if it preserves filtered colimits as
well as geometric realization, i.e. ∆op-indexed colimits. Note that the situation is different than if
one defined this notion in the 1-categorical world; in particular, ∆≤1, which models the shape of
a reflexive coequalizer, is sifted in the 1-categorical world but not in the higher sense.

Proposition 1.1.28 In S, sifted colimits commute with finite products. Moreover, a category J
is sifted if and only if colimJ : Fun(J,S) → S commutes with finite products.

Proof. We already know that filtered colimits commute with finite products, hence it suffices to
show that geometric realizations do. As we are not aware of a trick for this, we omit this proof —
one strategy is to resolve the geometric realization in a model category of choice and prove it there
(see Remark 5.5.8.12 and Lemma 6.1.3.14 of [Lur08]). The other direction of the equivalence will
be proven more generally in the next section, and is the same as in Corollary 1.1.16.

1The proof is as follows: show that it holds for Kan complexes, as in this MSE question and then use the fact
that the localisation Kan → S preserves small products by virtue of the model structure, in fact only half of it
suffices by [Cis19, Proposition 7.7.1]
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Usually, an object X ∈ C such that Map(X,−) commutes with sifted colimits is called compact
projective. In the case of spaces however, there is a much more usual name: finite sets.

Proposition 1.1.29 The full subcategory of S of those X such that Map(X,−) commutes with
sifted colimits is the category FinSet of finite discrete spaces (i.e. sets). Moreover, the inclusion
i : FinSet → S induces, for every C with sifted colimits, an equivalence

i∗ : Funsft(S, C) Fun(FinSet, C)≃

where the superscript sft denotes the full subcategory of sifted colimit preserving functors.

Proof. The second part will be subsumed in the next section. Let us only prove that FinSet is
the claimed category: since ∗ is compact projective, so is every finite coproduct of it by virtue of
Proposition 1.1.28.

Conversely, if X is a space such that Map(X,−) commutes with sifted colimits, we can find
a Kan complex model for X itself and therefore realize it as the geometric realization of its n-
simplices, which are filtered colimits of finite sets. In particular, there is a sifted colimit of finite
sets whose colimit is X.

Therefore, idX must factor through a finite set and to conclude, we note that the retract of a
finite set is necessarily discrete and with finite π0.

1.2 Doctrines and colimit-completions
In Proposition 1.1.6, we explain how to freely add colimits to a category. But later throughout

the section, we realized that we could also have added less colimits to a bigger category than ∗
and this was still “free” in some sense. In this section, we first explore how to freely add a class
of colimits to a category while preserving some or in fact even, forcing a collection of cocones to
be colimits. Afterwards, we explore the interaction between adding a shape of colimits freely and
adding all colimits while respecting a shape, generalizing Propositions 1.1.19, 1.1.25 and 1.1.29.

Given a collection S : {fα : Xα → Yα} of arrows in a category C, we can ask whether a given
object Z is S-local, i.e. if for every α, the natural map

f∗
α : Nat(Yα, Z) −→ Nat(Xα, Z)

is an equivalence. The collection of S-local objects is closed under limits. Note also that we can
always saturate a collection of arrows S, i.e. add to S all the morphisms Xβ → Yβ such that the
above precomposition map is an equivalence for S-local objects, and this new collection S has the
same local objects. Moreover, S automatically contains equivalences, is closed under 2-out-of-3
and is closed under colimits; the following is Proposition 6.2.3.12 [Lur18, Tag 04KG] — we will
not reprove it.

Lemma 1.2.1 Suppose that S is a saturated class such that for every X ∈ C, there is a map
f : X → Y with Y S-local and f ∈ S. Then, the full subcategory S−1C of S-local objects of C
forms a reflexive subcategory, i.e. the inclusion has a left adjoint L : C → S−1C.

Let K be a collection of "shapes" (i.e. categories) which will serve as indexing our diagrams and
that we will typically denote K and fix C some category. Our goal is to freely adding K-shaped
colimits, by this we mean K-colimits for every K ∈ K — in fact, we will sometimes need to be a
bit more subtle and preserve some colimit diagrams in C.

We let R = {fα : K▷
α → C} be a collection of diagrams in C, where Kα ∈ K and K▷

α is our
notation for freely adding a cocone point to Kα. In human language, we have chosen a collection
of K-shaped diagrams in C and a cocone for each of them.

Note the following two points, which are more technicalities than anything: first, we do not
require these cocones to be colimit cocones so that we are doing something more general than also
preserving some colimits, we are actually enforcing some diagrams to be colimit diagrams. Second,
we do require that the Kα are in K which that if one wants to add say filtered colimits while
preserving some cocartesian squares in a category which does not have all pushouts, the resulting
category will have all pushouts.
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Theorem 1.2.2 There is a category PK
R(C) with K-shaped colimits and a functor γ : C → PK

R(C)
which sends every diagram in R to a colimit diagram. Moreover, for every category D with
K-shaped colimits, precomposition by γ induces an equivalence:

γ∗ : FunK(PK
R(C),D) ≃−−→ FunR(C,D)

where FunK denote the full subcategory of functors preserving K-shaped colimits and FunR the
full subcategory of those functors sending every diagram in R to a colimit diagram.

Moreover, if the diagrams in R are already colimit diagrams in C, γ is fully-faithful.

Proof. We follow essentially the proof of [Lur08, Proposition 5.3.6.2]. Write j : C → P(C) for
the Yoneda embedding and consider the collection S

colim
Kα

(j ◦ fα) |Kα−→ (j ◦ f)(∗Kα))

for each diagram fα : K▷
α → C in R where ∗Kα denotes the cocone point of K▷

α. We first check
the conditions of Lemma 1.2.1. A S-local object ϕ for the above collection is simply a presheaf
ϕ : Cop → S such that ϕ◦fα is a limit diagram. We note that given a presheaf ϕ, there is an initial
map

η : ϕ −→ ψ

where the right hand side is S-local, and we can simply take ψ to be the limit indexed by the full
subcategory Cψ/ spanned by those maps whose target is S-local. But now, for ξ another S-local
object, the map

Nat(ψ, ξ) ≃−−→ Nat(ϕ, ξ)

is necessarily an equivalence by the universal property of η. Note that ψ is just the value at ψ of
the right Kan extension of the restriction to the full subcategory of S-local objects, so we could
have done away with the lemma and simply produce the adjoint directly.

We let L : C → S−1C be the left adjoint to the category of S-local objects, which exists by
Lemma 1.2.1 and we write PK

R(C) for the smallest full subcategory of S−1C containing the image
of L ◦ j and stable under K-shaped colimits. We claim that for every D with K-shaped colimits,
precomposition along L ◦ j induces an equivalence:

(L ◦ j)∗ : FunK(PK
R(C),D) ≃−−→ FunR(C,D)

We first note that L ◦ j sends the diagrams of R to colimits since L inverts the maps in S and
preserves colimits, so the above functor is well-defined. Moreover, the minimality hypothesis on
PK

R(C) implies that this functor is conservative.

Suppose for a moment that D has all small colimits. This extra-assumption allows the left
Kan extension along L ◦ j to exists and it is given by F 7→ (j!F ) ◦ i where i : PK

R(C) → C is the
inclusion. In particular, since i preserves K-shaped colimits, and j!F : P(C) → D all of them by
Lemma 1.1.5, the left Kan extension (L ◦ j)! does restrict to the wanted categories, so that it is a
left adjoint to (L ◦ j)∗.

Now given F : C → D that sends R to colimits, we want to check that the map

F −→ (L ◦ j)∗(L ◦ j)!F

is an equivalence. Now note that because j is fully-faithful, it will suffice to prove that j!F →
L∗L!j!F is an equivalence. But because F sends every fα to a colimit already, the functor j!F
factors through the category of S-local objects S−1P(C) (in fact this is an if and only if), and
therefore is canonically equivalent to L∗L!j!F .

Finally, we reduce to the case where D has small colimits. Note that D → D := Fun(D,S)op

is colimit-preserving, as the opposite of the Yoneda embedding of Dop, and its target has all small
colimits since S has small limits. Hence, the above applies to D and it suffices to show that the
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following square is cartesian:

FunK(PK
R(C),D) FunR(C,D)

FunK(PK
R(C),D) FunR(C,D)

In turn, this means showing that if F : PK
R(C) → D preserves K-shaped colimits and restricts to

D along α, then F itself was already landing in D. But the full subcategory F−1(D) contains C
by assumption and is closed under K-shaped colimits, hence PK

R(C) ⊂ F−1(D) which concludes by
minimality.

It remains to explain the last claim of the Theorem: suppose that every diagram in R is a
colimit diagram. Then, to show that α is fully-faithful, it suffices to check that j : C → P(C) lands
in S-local objects for the aforementioned collection of maps S. We have to show for every X ∈ C

Nat(j(F (∗R)), j(X)) ≃−−→ Nat(colim
R

j ◦ F |R, j(X))

for every diagram F : R → C. Using the Yoneda lemma and the fact that F (∗R) ≃ colimR F |R,
this is clearly follows from the fact that

Map(colim
r∈R

F (r), X) −→ lim
r∈R

Map(F (r), X)

is an equivalence.

We say that PK
R(C) is C to which we have added K-shaped colimits while forcing R to be

colimits. If R is already a collection of colimits cocones, we say that instead "while preserving
R-colimits". Finally, if R = ∅, we say that we have freely added K-shaped colimits to C
■ Example 1.2.3 If K = Cat and R = ∅, Proposition 1.1.6 has guaranteed that PK

R(C) ≃ P(C) and
j is the Yoneda embedding.

We have also seen that S is the common value of Pω−filt
∅ (Sfin), Pκ−filt

∅ (Sκ) and Psifted
∅ (FinSet).

In all three cases, we also got that the resulting category had all small colimits and the inclusion
preserved the complementary type of them, i.e.

Pω−filt
∅ (Sfin) ≃ Psmall

fin (Sfin)

Pκ−filt
∅ (Sκ) ≃ Psmall

κ−small(Sκ)

Psifted
∅ (FinSet) ≃ Psmall∐ (FinSet)

where we hope all of the super/subscripts are clear. This is not a coincidence, and we will explain
it later in the section. ■

Remark 1.2.4 Given K and a choice R of cocones in C, the association PK
R(−) naturally refines to

a functor thanks to its universal property. Its source is the category of pairs (C,R) where maps
are functors which preserve the collections of the chosen coconesa; its target is the category of
categories with K-shaped colimits.

In fact, PK
R(−) is a left adjoint to the functor sending D with K-shaped colimits to (D, {K −

shaped colimits cocones in D}. This is especially pratical because this adjunction often de-
scends when considering subcategories of the form (C,R) with R chosen functorially (such as
finite colimit cocones, etc ...).

aMore precisely, f : C → D must be such that if p : K▷
α → C is in RC , then f ◦ p is RD

We now showcase three examples which will be important for us later on. The first one will be
ubiquitous throughout this lecture.

Definition 1.2.5 The κ-inductive completion of C, denoted Indκ(C), is the category obtained
from C by freely adding κ-filtered colimits, i.e. Indκ(C) ≃ Pκ−filt

∅ (C).

The second kind of example will be a little less common for us, but does have its use in other
parts of higher category theory:
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Definition 1.2.6 The non-abelian derived category of C, denoted PΣ(C), is the category obtained
from C by freely adding sifted colimits, i.e. PΣ(C) ≃ Psifted

∅ (C). In recent years, this category
has also been known as the animation of C.

We write Ret for the category generated by the graph two vertices A,X, with non-trivial maps
i : A → X, r : X → A such that r ◦ i = id. We write Idem for the full subcategory spanned by the
vertex X. We note that the inclusion Idem → Ret is cofinal, hence every functor with source Ret
is left Kan extended from Idem. Therefore, a functor F : Idem → C admits a colimit if and only if
it extends to Ret.

Definition 1.2.7 We write Idem(C) for the category obtained from C by freely adding retracts to
idempotent, i.e. Idem(C) ≃ PIdem

∅ (C).

Remark 1.2.8 If C admits finite colimits, it need not be that every idempotent has a colimit, i.e.
Idem is not a finite category in the higher categorical world.

We finish this section by ideas of Rezk [Rez21], himself based on 1-categorical results notably
by Adámek, Lawvere, Rosický and many of their collaborators, from which tries to encapsulate
the fact that the three Proposition 1.1.15 1.1.22, 1.1.28 have similar statements and similar proofs
(which we ourselves have skipped for this very reason).

For the rest of the section, fix U a collection of small categories which we call our doctrine.
Definition 1.2.9 A category J is called U-filtered if colimJ : Fun(J,S) → S preserves U -shaped
limits.

A category J is called weakly U-filtered if for every U ∈ U , the functor cst : J → Fun(Uop, J)
is cofinal.

■ Example 1.2.10 If J has all Uop-colimits for U ∈ U , then J is weakly U-filtered, since cst has a
left adjoint. Note also that although it looks different, this definition recovers the one for κ-filtered
using U = {κ-small categories} since those are closed under op. ■

The reason for the op appearing in our definition is so that they disappear in the following:

Lemma 1.2.11 A category J is weakly U-filtered if and only if colimJ : Fun(J,S) → S preserves
U-shaped limits of corepresentable functors. In particular, U-filtered categories are weakly U-
filtered.

Proof. By Quillen’s Theorem A [Lur08, Theorem 4.1.3.1], J is weakly U -filtered if and only
if for every U ∈ U and every F : Uop → J , the category Fun(Uop, J)F/ ×Fun(Uop,J) J is con-
tractible. We recall that this category is the total space of the unstraightening of Nat(F, cst(j)) ≃
limu∈U Map(F (u), j) as a functor J → S.

On the other hand, colimJ preserves U -limits of corepresentables if for every F : Uop → J the
map

η : colim
j∈J

lim
u∈U

Map(F (u), j) −→ lim
u∈U

colim
j∈J

Map(F (u), j)

is an equivalence.
Note that by Lemma 1.1.2 colimj∈J Map(F (u), j) is always contractible as Map(F (u),−) is

classified by JF (u)/ → J whose total category has an initial object. In particular, if η is an
equivalence then the left hand side is contractible and therefore again by Lemma 1.1.2, the cate-
gory Fun(Uop, J)F/ ×Fun(Uop,J) J is weakly contractible. Reciprocally, if this category is weakly-
contractible, then the left hand side is also contractible hence both sides are contractible and
therefore the map is an equivalence.

Warning 1.2.12 The converse need not hold. Rezk has some examples in section 6 of his paper.
Let us also mention another. Consider U := {κ-small sets} for some κ > ω, then we claim that
the category ∆κ of linearly order κ-small sets and order preserving maps is weakly U -filtered;
the argument adapts from the standard argument showing that ∆ is (weakly) ω-sifted.
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Nonetheless, it can be shown that κ-small products of spaces do not commute with ∆κ-
indexed colimits. In fact, the main result of [AKV00] shows that in the 1-categorical world,
U-filtered categories are actually κ-filtered (!), which ∆κ is not.

Therefore, if J is such that colimJ : Fun(J,S) → S preserves κ-small products, so will the
colimit functor valued in Set since π0 preserves colimits and arbitrary productsa, and therefore
J will be κ-filtered. Since κ-small sets are in particular κ-small categories, we see that colimJ

preserves κ-small products if and only if J is κ-filtered.
aYet another thing we do not know of a good reference for, except for https://math.stackexchange.com/

questions/713792/does-pi-0-preserve-infinite-productsthis MSE answer which is not quite written in a
model-independant way.

Definition 1.2.13 We call a doctrine sound if the converse of Lemma 1.2.11 holds.

We will not draw an explicit criterion for soundness in this version of the course notes, but we
want to include one eventually.

Given a doctrine U , we write U for the collection of U such that colimJ : Fun(J,S) → S
preserves U -shaped limits for every U -filtered J . By definition U ⊂ U . Moreover, if U ⊂ V, then
U ⊂ V.

Definition 1.2.14 A doctrine U is regular if U = U .

■ Example 1.2.15 The doctrine of κ-small categories is regular as soon as κ is a regular cardinal. ■

The categories in ∅ are often known are universal (co)limits. In particular, for every regular
doctrine U , we have ∅ ⊂ U .

Lemma 1.2.16 The category Idem belongs to ∅, i.e. it is preserved by colimJ : Fun(J,S) → S
for every J .

Proof. This follows directly from the fact that Idem → C has a colimit if and only if it extends
to Ret.

Note that since Idemop ≃ Idem, the above statement also holds for limit preservation.
Definition 1.2.17 An object X ∈ C is U-compact if Map(X,−) : C → S commutes with U-filtered
colimits.

■ Example 1.2.18 The point ∗ ∈ S is U-compact for any collection U . Any initial object is U -
compact for any U . ■

Note that U-compacity only depends on the class of U -filtered categories, which itself only
depends on the regular doctrine U generated by U .

Lemma 1.2.19 Let C be a category. The subcategory of U-compact objects of C is closed under
all the Uop-indexed colimits that exist, for U ∈ U . In particular, U-compact objects are always
closed under retracts.

Proof. By Lemma 1.2.16, Idem ∈ ∅ ⊂ U . Hence, it suffices to prove the first claim. Given a
Uop-indexed diagram of compact objects Xu which admits a colimit X in C, we have Map(X,−) ≃
limu∈U Map(Xu,−). Now given J which is U-filtered and a J-indexed diagram Yj , the canonical
map

colim
j∈J

lim
u∈U

Map(Xu, Yj)
≃−−→ lim

u∈U
colim
j∈J

Map(Xu, Yj)

is an equivalence. Using that eachXu is compact, the right hand side identifies with Map(X, colimj Yj)
whereas the left hand side is colimj Map(X,Yj) which concludes.

Another consequence of the above is that the full subcategory of S of U-compact objects always
contain the full subcategory generated by ∗ under Uop-indexed colimits for U ∈ U .
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Remark 1.2.20 Actually, the previous proof only used that colimJ commutes with corepre-
sentable presheaves, so it also applies to a version of compact objects defined with respect to
weakly U -filtered colimits.

Definition 1.2.21 Let C be a small category. We write IndU (C) for the category obtained from
C by freely U -filtered colimits, i.e. IndU (C) ≃ PU−filt

∅ (C) in the notations of Theorem 1.2.2.

■ Example 1.2.22 It is standard to write Ind(C) for Indω−filt(C), i.e. freely adding filtered colimits
to a category, and call it the inductive completion of C (in the sense of objects in Ind(C) being
formal inductive systems, inductive being a old (possibly weaker?) name for filtered.

More generally, we will write Indκ(C) for freely adding κ-filtered colimits to a category. ■

■ Example 1.2.23 The “old-school” name and notation for Indsifted(C), freely adding sifted colimits
(equivalently, filtered colimits and geometric realizations) is PΣ, the non-abelian derived category.
If C has finite coproducts, the following theorem will show that it also coincides with finite-product
preserving presheaves on spaces, a process often call animation under the influence of the condensed
mathematics crowd, which call S the category of anima.

In particular, as a consequence of what we explained in the previous section, S is the animation
of the finite coproduct closure of ∗, i.e. the category FinSet of finite sets. ■

Theorem 1.2.24 — Rezk. Let U be a sound doctrine. Suppose C is a category with Uop-colimits
for every U ∈ U , then there is an equivalence

IndU (C) ≃ FunU−lim(Cop,S)

where FunU−lim designates the full subcategory of U-limit preserving presheaves.
Moreover, IndU (C) has Uop-colimits for every U ∈ U and they are preserved by the fully-

faithful jU : C → IndU (C), so there is another equivalence IndU (C) ≃ PU−filt
Uop (C).

Proof. We begin by reducing the second assertion to the first; for this, we prove that the category
FunU−lim(Cop,S) has Uop-colimits for U ∈ U and they are preserved by the Yoneda embedding. It
follows from Lemma 1.2.1 that the inclusion

FunU−lim(Cop,S) −→ P(C)

has a left adjoint. Indeed, by the Yoneda lemma, we see that the left hand side is the category of
presheaves which are local with respect to the collection of maps

colim
u∈Uop

j(Xop(u)) −→ j(colim
u∈Uop

Xop(u))

for every X : U → Cop, and this collection satisfies the hypotheses of 1.2.1. In particular, since
P(C) has colimits, so does FunU−lim(Cop,S) and the above collection of maps makes it clear that
Uop-colimits are preserved by j.

We now check that FunU−lim(Cop,S) has the wanted universal property. In fact, we check that
it coincides with the description of PU−filt

∅ (C) given by Theorem 1.2.2. Note that since our R is
empty, this is precisely the smallest full subcategory of P(C) containing the image of the Yoneda
and closed under U-filtered colimits.

We first remark that if X ∈ C, then j(X) := Map(−, X) : Cop → S preserves U-limits.
Moreover, FunU−lim(Cop,S) is closed under U-filtered colimits in P(C) precisely because those
commute with U-limits in spaces. To conclude, it suffices to show that every presheaf ϕ : Cop → S
which commute with U-limits is a U -filtered colimit of representables.

We have already proven this statement: indeed, recall from the proof of Proposition 1.1.6 that
the canonical map

colim
j(Y )→ϕ

Map(X,Y ) −→ ϕ(X)

is an equivalence. We claim that the category Uncart(ϕ) ≃ P(C)/ϕ ×P(C) C which indexes the
colimit is U -filtered, i.e. that space-valued colimits indexed by Uncart(ϕ) commute with U-limits.
Note that it is automatically weakly U -filtered since it admits Uop-colimits; this is straightforward
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from identifying Uncart(ϕ) ≃ FunU−lim(Cop,S)/ϕ ×FunU−lim(Cop,S) C and the first statement we
proved.

Remark 1.2.25 We found throughout the proof that another description of IndU (C) is the cate-
gory of presheaves ϕ such that Un(ϕ) is a U -filtered category. In fact, the above shows that this
description stands even if C has not enough Uop-shaped colimits and U is not necessarily sound.
We refer to Rezk’s manuscript [Rez21] for a more general picture (including what happens when
U is not sound).
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