Worksheet 1 - Homotopy II

Victor Saunier

January 10, 2023

Exercise 1 Two-out-of-three/six

Let \mathcal{W} be a collection of arrow of \mathcal{C} , we say \mathcal{W} satisfies 2-out-of-3 if for every couple of composable arrows f, g, any two out of the three $f, g, g \circ f$ being in \mathcal{W} implies the third is. We say \mathcal{W} satisfies 2-out-of-6 if for every triple of composable arrows f, g, h such that $g \circ f \in \mathcal{W}$ and $h \circ g \in \mathcal{W}$, then the four other maps $f, g, h, h \circ g \circ f \in \mathcal{W}$.

- 1. Let \mathcal{W} be a collection of arrow of \mathcal{C} satisfying 2-out-of-6. Show \mathcal{W} satisfies 2-out-of-3.
- 2. a) Show the collection of isomorphisms of a category always satisfies 2-out-of-3. Does it also satisfies 2-out-of-6?
 - b) Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let $\mathcal{I}_{\mathcal{C}}$ be the collection of isomorphisms of \mathcal{C} . Show $F(\mathcal{I}_{\mathcal{C}})$ satisfies 2-out-of-6.
 - c) Find a collection of arrows satisfying 2-out-of-3 but not 2-out-of-6.
- 3. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let \mathcal{W} be a collection of arrows of \mathcal{D} satisfying 2-out-of-3 (resp. 2-out-of-6). Show $F^{-1}(\mathcal{W})$ satisfies 2-out-of-3 (resp. 2-out-of-6).
- 4. Let \mathcal{W} be a collection of arrows in \mathcal{C} , and denote $L : \mathcal{C} \to \mathcal{C}[\mathcal{W}^{-1}]$ the localisation functor. Show that $\mathcal{C}[\mathcal{W}^{-1}] \simeq \mathcal{C}[L^{-1}(\mathrm{Iso})^{-1}].$
- 5. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let \mathcal{W} be a collection of arrows of \mathcal{C} satisfying 2-out-of-3. Is it true that $F(\mathcal{W})$ satisfies 2-out-of-3?

Exercise 2 Lifting Properties

In the following, C is a category with small limits and colimits. Let $i : A \to B$ and $p : X \to Y$ be two morphisms, we write $i \perp p$ ("*i* has the LLP against *p*" or equivalently, "*p* has the RLP against *i*") if for every square as follows, there exists a dotted arrow making the diagram commute:

$$\begin{array}{c} A \longrightarrow X \\ \downarrow^{f} & \downarrow^{g} \\ B \longrightarrow Y \end{array}$$

If \mathcal{W} is a collection of morphisms in \mathcal{C} , we let $^{\perp}\mathcal{W}$ (or $LLP(\mathcal{W})$) be the collection of arrows i such that for every $p \in \mathcal{W}$, $i \perp p$. Conversely, \mathcal{W}^{\perp} (or $RLP(\mathcal{W})$) is the collection of p such that for every $i \in \mathcal{W}$, $i \perp p$.

- 1. Let \mathcal{W} be a collection of morphisms of \mathcal{C} .
 - a) Show that $LLP(\mathcal{W})$ and $RLP(\mathcal{W})$ contain every isomorphism and are stable under composition.
 - b) Show that $LLP(\mathcal{W})$ is stable under cobase change (i.e. if $i : A \to B \in LLP(\mathcal{W})$ and $f : A \to A'$ is any map, then $A' \to A' \coprod_A B \in LLP(\mathcal{W})$).
 - c) Show that RLP(W) is stable under base change.
- 2. Let $f: X \to Y$ be a map of \mathcal{C} . Show that $LLP(\{f\})$ is the collection of every arrow in \mathcal{C} if and only if f has a left inverse (resp. $RLP(\{f\})$ and right invertible).

(Cisinski) A class of arrows \mathcal{W} is said to be stable under *transfinite composition* if, for every well-ordered set I with initial object \emptyset and every functor $F: I \to \mathcal{C}$ such that every partial colimit $F_{\langle i} := \operatorname{colim}_{j \langle i} F(j)$ exists and every map $F_{\langle i} \to F(i)$ is in \mathcal{W} , then colim F exists and the map $F(0) \to F_{\leq i}$ is in \mathcal{W} .

3. Show that $LLP(\mathcal{W})$ and $RLP(\mathcal{W})$ are stable under transfinite composition.

Exercise 3 Retracts and models

Let $f: A \to B$ and $g: X \to Y$. We say that f is a retract of g if there exists a commutative diagram

$$\begin{array}{ccc} A & \stackrel{i}{\longrightarrow} X & \stackrel{p}{\longrightarrow} A \\ & \downarrow^{f} & \downarrow^{g} & \downarrow^{f} \\ B & \stackrel{j}{\longrightarrow} Y & \stackrel{q}{\longrightarrow} B \end{array}$$

such that the composites pi and qj are the respective identities id_A and id_B .

- 1. (The Retract Argument) Let $i : A \to B$ and $p : B \to C$ and denote f := pi. Suppose $f \in LLP(\{p\})$, then show that f is a retract of i
- 2. Let \mathcal{A} be a (co)complete category and $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ three collections of arrows such that:
 - 1. \mathcal{W} is closed under 2-out-of-6.
 - 2. $\mathcal{C}, \mathcal{F}, \mathcal{W}$ are closed under retracts.
 - 3. $\mathcal{C} \cap \mathcal{W} \subset LLP(\mathcal{F})$ and $\mathcal{C} \subset LLP(\mathcal{F} \cap \mathcal{W})$
 - 4. Every arrow of \mathcal{A} factors as an arrow of \mathcal{C} followed by an arrow of \mathcal{F} , and both can be taken acyclic (i.e. also in \mathcal{W}) but not necessarily simultaneously.
 - a) Using the first question, show that $\mathcal{C} \cap \mathcal{W} = LLP(\mathcal{F})$ and $\mathcal{C} = LLP(\mathcal{F} \cap \mathcal{W})$
 - b) Deduce that $\mathcal{F} \cap \mathcal{W} = RLP(\mathcal{C})$ and $\mathcal{F} = RLP(\mathcal{C} \cap \mathcal{W})$.
 - c) Show that $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ describes a model structure on \mathcal{A} .

Exercise 4 Miscellaneous about colimits

For simplicity, all rings are commutative.

- 1. Let R be a commutative ring. Show that $A \otimes_C B \simeq A \coprod_C B$ in the category of R-algebras.
- 2. Let $f, g: A \to B$ be two morphisms of a category C. The coequalizer of f, g is the map $h: B \to X$ given by the following universal property: for every $\alpha: B \to C$ such that $\alpha \circ f \simeq \alpha \circ g$, α factors through h:

$$A \xrightarrow{f} B \xrightarrow{h} \operatorname{CoEq}(f,g) \xrightarrow{f} C$$

- a) Compute the coequalizer of two morphisms in Set. Is it different from the pushout $B \coprod_A B$ of f and g?
- b) Suppose C admits a zero object. Show the coequalizer of f and 0 is the kernel of f.
- c) Let \mathcal{A} be an abelian category. Show that $\operatorname{CoEq}(f,g) \simeq \ker(f-g)$.
- 3. Let R be a ring, and $t \in R$. We denote $\phi_t : R \to R$ the morphism $a \mapsto at$. Compute the colimit of the following diagram in the category of rings:

$$R \xrightarrow{\phi_t} R \xrightarrow{\phi_t} R \xrightarrow{\phi_t} R \xrightarrow{\phi_t} \dots$$

Is the colimit different in the category of *R*-algebras?

4. Show that a functor L admitting a left adjoint preserves colimits.

Exercise 5 Finitely presented and compact modules

Let R be a commutative ring. A R-module M is said to be finitely presented if there exists a surjection $R^k \rightarrow M$ with finitely generated kernel.

- 1. What are the finitely presented k-vector spaces, when k is a field?
- 2. Let $F, G : \operatorname{Mod}_R \to \mathcal{C}$ be two left-exact functors equipped with a natural transformation $\eta : F \implies G$. Suppose $\eta(R^k)$ is an isomorphism for every $k \in \mathbb{N}$. Deduce that η is an isomorphism on every finitely presented module.
- 3. a) Show any *R*-module can be written as the filtered colimit of finitely presented modules.
 - b) Show any direct summand of a finitely-presented module is itself finitely-presented.

- c) Deduce that any compact *R*-module is finitely presented.
- d) Using the previous question, show that in fact, M is compact in the category of R-modules if and only if it is finitely presented.

Exercise 6 Ken Brown's Lemma

Let \mathcal{C} be a model category and \mathcal{D} a category with weak equivalences satisfying 2-out-of-3. Suppose $F: \mathcal{C} \to \mathcal{D}$ takes trivial cofibrations between cofibrant objects to weak equivalences. Show that F takes in fact all weak equivalences between cofibrant objects to weak equivalences.

Exercise 7 Unique Lifts and Orthogonal Factorizations (*Zhen Lin on MSE*)

Let *i* and *p* be two arrows such that $i \perp p$. We say that *i* and *p* are *orthogonal* if the solution to every lifting problem is unique (i.e. the dotted arrow making a given square commute is always unique). We let $(\mathcal{A}, \mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model category.

- 1. Suppose $\mathcal{C} \cap \mathcal{W}$ and \mathcal{F} are orthogonal to one another. Show that trivial cofibrations between fibrant objects are isomorphisms and every morphism between fibrant objects is a fibration.
- 2. Deduce that if both $\mathcal{C} \cap \mathcal{W}$ and \mathcal{F} as well as $\mathcal{F} \cap \mathcal{W}$ and \mathcal{C} are orthogonal to one another, then every weak equivalence between cofibrant-fibrant objects is an isomorphism. In particular, $\mathcal{A}[\mathcal{W}^{-1}] \simeq \mathcal{A}_{cf}$ where \mathcal{A}_{cf} is the full subcategory of cofibrant-fibrant objects.

Exercise 8 Slice model categories

Let $X \in \mathcal{A}$ and $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model structure on \mathcal{A} . We denote $\mathcal{A}_{/X}$ the category whose objects are maps $\alpha : Y \to X$ of \mathcal{A} and whose morphisms are commutative triangles

$$\begin{array}{c} Y \xrightarrow{\alpha} X \\ f \downarrow & \swarrow \\ Y' & & \\ \end{array}$$

Similarly, we denote $\mathcal{C}_{/X}$ (resp. $\mathcal{F}_{/X}, \mathcal{W}_{/X}$) the morphisms of $\mathcal{A}_{/X}$ as above where $f \in \mathcal{C}$ (resp.).

- 1. Show that $(\mathcal{C}_{/X}, \mathcal{F}_{/X}, \mathcal{W}_{/X})$ determines a model structure on $\mathcal{A}_{/X}$. We call it the *slice model structure*.
 - 2. What are the fibrant objects on the above described model structure ? The cofibrant objects ?

Exercise 9 A model structure on Cat (*Charles Rezk*)

Denote Cat the category of small categories. We assume that it is complete and cocomplete. We let \mathcal{W} denote equivalences of categories and \mathcal{C} denote functors that are injective on objects. We let \mathcal{F} denote functors $F : \mathcal{A} \to \mathcal{B}$ such that for every isomorphism $g : F(a) \to b$ of \mathcal{B} , there is a map $f : a \to a'$ with g = F(f); such functors are called *isofibrations*.

- 1. Denote * the category with one object and no non-trivial arrows, and I the category with two objects 0, 1 and exactly one isomorphism in each direction. Let $i : * \to I$ be the inclusion at 0. Show that $\mathcal{F} = RLP(\{i\})$.
- 2. Show that \mathcal{W} verifies 2-out-of-3, and that \mathcal{W} , \mathcal{C} and \mathcal{F} are stable under retracts.
- a) Show that every functor F of C ∩ W has a left inverse G which is also a quasi-inverse and such that the natural transformation FG ≃ id is equal to the identity on the image of F.
 b) Deduce that F ⊂ RLP(C ∩ W).
- 4. Show that $\mathcal{C} \subset LLP(\mathcal{F} \cap \mathcal{W})$.
- 5. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. Denote $\operatorname{Path}(F) := \mathcal{A} \times_{\mathcal{B}} \mathcal{B}^{I}$ where the map $\mathcal{B}^{I} \to \mathcal{B}$ is the source map, and $\operatorname{Cyl}(F) := \mathcal{A} \times (I \coprod_{\mathcal{A}} \mathcal{B})$. Show that F factors through $\operatorname{Path}(F)$ and $\operatorname{Cyl}(F)$; deduce that $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ is a model structure on Cat.
- 6. What are the fibrant objects, the cofibrant objects ?

Exercise 10 Model structures on vector spaces (Adapted from Najib Idrissi)

Let k be a field and denote Vect(k) the category of vector space on k. We will use that every vector space, even the infinite-dimensional ones, has a basis (aka the axiom of choice).

1. Let there be a commutative square (without a dotted arrow for now)

- a) Show that u factors through i if and only if ker $i \subset \ker u$.
- b) Show that v factors through p if and only if $\operatorname{im} v \subset \operatorname{im} p$.
- c) Show that there exists a dotted arrow as above if and only if both conditions are met.
- 2. a) Show that $i \perp p$ if and only at least one of i, p is surjective and at least one is injective. b) Deduce what are the possibilities for $LLP(\mathcal{W})$, when \mathcal{W} is any class of arrows.
- 3. Suppose $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ is a model structure on Vect(k).
 - a) Show that $\mathcal{W} = RLP(\mathcal{F}) \circ LLP(\mathcal{C})$. Using the above, what are the possibilities for $\mathcal{W}, \mathcal{C}, \mathcal{F}, \mathcal{C} \cap \mathcal{W}$ and $\mathcal{F} \cap \mathcal{W}$?
 - b) Using that a model structure is fully determined by the data of \mathcal{W} and \mathcal{F} , make a list of all the model structures on Vect(k) (be careful that you are writing model structures).

Exercise 11 Properness

A model structure $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ on \mathcal{A} is said to be *left proper* if weak equivalences are stable under cobase change of cofibrations, and *right proper* if weak equivalences are stable under base change of fibrations.

- 1. In the classical model structures you know, which ones are right proper? left proper?
- 2. Show that if every object is fibrant, then \mathcal{A} is right proper (resp. cofibrant, left proper).
- 3. Suppose that weak equivalences in \mathcal{A} are stable under base change of fibrations with target (and thus source) a fibrant object. Show that \mathcal{A} is right proper.