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Abstract

Résumé: On reformule les idées de méthodes de trace pour comprendre la K-théorie al-
gébrique à travers les outils de la théorie de l’homotopie moderne. En particulier, on étend la
caractérisation de THH en tant que stabilisation de la K-théorie à toutes les catégories stables
et les bimodules sur celles-ci. Plus généralement, on calcule toute la tour de Taylor-Goodwillie
de la K-théorie lacée, notre extension de la K-théorie des endomorphismes paramétrisés. Pour
ce faire, on fournit des propriétés universelles pour la K-théorie lacée et THH.

Dans un second temps, on étudie la convergence de la tour de Taylor-Goodwillie de la
K-théorie lacée et de THH lacée. Cela amène à un résultat comparant la K-théorie lacée
à l’homologie cyclique topologique lacée, expliquant la structure locale de la K-théorie al-
gébrique. Pour cela, on introduit les structures coeurs sur les catégories stables, généralisant
les structures de poids de Bondarko, et on produit des théorèmes de résolutions pour la K-
théorie et THH. Le point d’orgue est une généralization du cas extension de carré nulle scindée
du théorème de Dundas-Goodwillie-McCarthy pour les extensions nilpotentes qui s’applique
désormais à des catégories stables qui ne sont pas nécessairement l’envelope stable d’une caté-
gorie additive.

Abstract: We reframe the ideas of trace methods to understand algebraic K-theory
through modern homotopy theory. In particular, we extend the characterization of THH
as stable K-theory for all stable categories and all bimodules, and more generally, compute
the whole Taylor tower of laced K-theory, our extension of K-theory of parameterized endo-
morphisms. In the process, we characterize both laced K-theory and THH with coefficients
by universal properties.

In a second time, we study the convergence of the Taylor tower for laced K-theory and
laced THH, which gives rise to comparison results with topologic cyclic homology, and the
so-called local structure of algebraic K-theory. For this, we introduce heart structures on
stable categories generalizing the weight structures of Bondarko and leverage them to extend
resolution theorems for K-theory and THH. The upshot is that we are able to generalize the
split square-zero case of the Dundas-Goodwillie-McCarthy theorem to stable categories that
are not generated by an additive subcategory.
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1 Introduction
1.1 What are trace methods?

Let M be a square matrix, then det(id +tM) is a polynomial in the variable t whose constant
term is 1. Let us denote for a moment P1 det(M) the linear coefficient: it is a classical exercise
of linear algebra to determine it, and let us run quickly through what we believe is the most
elegant method. First, remark that for any (non-necessarily square!) matrices A,B, we have
det(id +tAB) = det(id +tBA), a formula known as the Weinstein–Aronszajn identity; this long-
winded name hides its simplicity, as it can be obtained from considering det(A+ABA) and using
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in short succession, the multiplicative property of det, the commutativity of the base ring and the
polynomial nature of the determinant.

Identifying the linear coefficients of the two polynomials, it must also hold that P1 det(AB) =
P1 det(BA). Moreover, it is also true that P1 det(M) is linear in M ; but then this fully-determines
our application up to a multiplicative constant. Indeed, P1 det is determined by its values on (Eij),
the canonical basis of square matrices, but

EijEkl = δjkEil

where δjk is the Kronecker symbol, which vanishes unless j = k and equals one otherwise. In par-
ticular, the cyclic invariance implies that δjkP1 det(Eil) = δliP1 det(Ekj), from which we deduce
that if i ̸= l, P1 det(Eil) = 0 and on diagonal matrices, P1 det(Eii) = P1 det(Ejj). In our case, it
is not too hard to determine the constant, which is 1, so that the mysterious P1 det is revealed to
be none other than the trace tr.

More can be said if the base field is of characteristic zero: then there exists a matrix exp(M)
satisfying to the following equation det(exp(M)) = exp(tr(M)). Moreover, writing L := ln(1+tM)
for the value of infinite series of general term (−1)n+1tnMn

n (this converges by forcing t to be small),
we get a matrix L such that exp(L) = 1 + tM and we deduce:

ln det(id +tM) =
+∞∑
n=1

(−1)n+1 tr(Mn)
n

tn (1)

Passing again to the exponential, and developing the series that defines it, we get an expression of
det(id +tM) for sufficiently small values of t. We claim that this is precisely the essence of trace
methods:

Slogan — Trace methods. Knowledge of traces of powers of a matrix M is sufficient to recover
the whole determinant of id +tM if t is small enough.

The goal of this thesis is, broadly, to show that this idea is so sturdy that it will survive quite
a leap in abstraction. Namely, we will show that it can be made sense of the (logarithm of the)
determinant of a bimodule M over a stable ∞-category C relative to the determinant of the base,
an object we denote Kcyc(C,M), and that under good hypotheses on C and M , it can be recovered
via knowledge of iterated traces THH(C,Mn). Moreover, we will give a meaning to the “Taylor
tower of Kcyc” and show in full generality that it is given by a formula which is essentially a gen-
eralization of Equation 1, see Corollary 5.34 and Theorem 6.18.

Let R a ring and M a R-bimodule, then we let K0(End(R,M)) be the abelian group generated
by symbols [N, f ] for every finite-type projective leftR-moduleN and everyR-linear endomorphism
f : N →M ⊗R N , under the following two relations:

• [N, f + g] = [N, f ] + [N, g]

• For every commutative diagram with rows short-exact sequences of left R-modules

N P Q

M ⊗R N M ⊗R P M ⊗R Q

f g h

the relation [P, g] = [N, f ] + [Q, h]

Suppose M = R for a moment; then, since N is projective of finite type, we have

HomR(N,N) ≃ HomR(N,R)⊗R HomR(R,N)

and the evaluation map provides a well-defined morphism EndR(N)→ R. By post-composing by
R→ R/[R,R], it can be shown that the above morphism descends to a morphism to the K0-group
previously defined; in fact this works with general M by a slight adaptation

K0(End(R,M)) −→ R⧸[R,R]⊗RM =: HH0(R,M)
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which, in the case where M = R, sends f : N → N to tr(f), the trace of f . This categorification
of the trace is called the Hattori-Stallings trace.

The abelian group K0(End(R,M)) appearing on the left of the Hattori-Stallings trace happens
to be a K-group, as we have hinted by the notation — an instance of a general construction first
introduced by Grothendieck. Let E be an exact category, that is an additive category with a
specification of short-exact sequences which satisfy some closure properties, then the direct sum
endows the core groupoid of E with the structure of a commutative monoid, up to isomorphisms.
Modding out by the latter, one can further enforce that every short-exact sequence splits by adding
the corresponding relations and that every element has an inverse, making our commutative monoid
into an abelian group. The resulting object is usually denoted K0(E) and the above furnishes a
universal property for it.

If we let End(R,M) denote the category of R-linear endomorphisms f : N → M ⊗R N for
finitely generated projective N , with arrows given by the commutative squares, then we have an
additive category and we can endow it with an exact structure whose exact sequences are exactly
given as in condition (ii) previously. It is clear that the two constructions of K0(End(R,M)) we
have given do agree.

As the notation suggests, there is more than one K-group and K0(E) is but the zeroth homotopy
group of a grouplike E∞-space1 denoted K(E) following Quillen in [Qui73]. Note that grouplike E∞-
space are equivalently described as a connective spectra without change to the homotopy groups, a
perspective we will adopt now. The connective K-theory spectrum, through its homotopy groups,
captures information critical to many solved and unsolved problems – let us cite in the latter
category the Kummer-Vandiver conjecture. Unfortunately, its computation is extremely hard, and
as the last example proves, even the complete K-theory of the integer is partly conjectural.

On the other side of the Hattori-Stallings trace, the group is usually known as HH0(R,M);
in fact, it is the zeroeth group of a cohomology theory whose representing spectrum we denote
HH(R,M), the Hochschild homology of R with coefficients in M , which is such that the Hattori-
Stallings trace identifies as the map on π0 of a map of spectra:

K(End(R,M)) −→ HH(R,M)

This is quite a rough map: it loses much of the K-theory information. After all, the trace is
certainly not enough to recover a determinant, and so it goes for the categorified story. The first
key insight of trace methods is that Hochschild homology has extra structure: HH(R,Mn) has a
cyclic action of order n and when taking the unit M = R, all of those actions assemble into a
S1-action.

Endowing K-theory with the trivial S1-action, the above map factors through HH(End(R,M))
with coefficients in itself via a S1-equivariant map. From this, we get the Goodwillie-Jones trace:

K(End(R,M)) −→ HC−(End(R,M))

where HC−, the negative cyclic homology, is the homotopy fixed points under the S1-action of
HH(End(R,M). A theorem of Goodwillie says that rationally, a slight variation on the above map
(replacing End(R,M) by the category of projective finite type R ⊕M -modules, where R ⊕M is
the square-zero extension of R by the bimodule M) is an equivalence, up to modding out by K(R)
on the left and HC(R) on the right.

Now is a good moment to say what already permeates the above discussion: we have a
“homotopy-pest problem”. Not only all of the above facts can be extended to a more general,
homotopy-theoretic setup, but actually, some of the above facts only hold in a suitable homotopic
sense. Instead of harrowingly and endlessly trying to chase the homotopy out, we have decided
instead to make peace with them, and to integrate them within the essence of our questions — we
will now pass to the framework of∞-categories initially developed by Joyal and then Lurie, and to
cement that this is a natural choice, we will omit the ∞ in front of every higher category, as well
as the homotopy in front of our limits, colimits and functors (and save some rare exceptions, in
front of everything). Hopefully once this thesis is complete, the skeptical reader will be convinced

1Here and unless otherwise specified, we use the word space to talk about homotopy types of spaces, sometimes
called anima.
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that this cohabitation was the only sensible choice and that after all, these homotopies are not so
pesky as one would have been led to believe.

In [Bar16], Barwick developed a definition of K-theory adapted to exact categories, refining
Quillen for exact 1-categories. For stable categories, in some sense the "maximally exact" categories,
which are equipped with a t-structure, he also proved in [Bar15] that the canonical map C♡ → C
from the abelian 1-category which the heart of the t-structure on C to C itself, is sent to an
equivalence by K-theory. Taking C = Db(R) to be the derived bounded category of a ring R, we
get that K-theory of stable categories recovers K-theory of ordinary rings.

For such categories, and slightly more generally, derived bounded categories of abelian cate-
gories, this also fits within the context of Gillet-Waldhausen-style theorems. Remark that the full
subcategory of stable categories CatEx is a reflexive subcategory of Exact∞, the category of exact
categories and exact functors. The left adjoint, Stab, comes with a unit map E → Stab(E), which
is such that

K(E) −→ K(Stab(E))
is an equivalence. In this generality, this result is a consequence of work of the author and Christoph
Winges in [Sau23b, SW25], but many cases have been known before, notably by work of Wald-
hausen, Gillet and Thomason. It in particular applies to exact 1-categories, and compares their
K-theory to that of a stable category which is never discrete. In particular, the set-up of stable
categories recovers entirely Quillen’s definition of K-theory and it happens to be categorically nicer,
so we will settle there for most of this thesis.

The general philosophy that one should garner from those statements is that K-theory is a
profoundly homotopic object and that the perspective of viewing usual objects of algebra as part
of the homotopic world is quite natural in the K-theoretic context. This is not quite the case of
Hochschild homology: to bridge this gap, Waldhausen imagined that there should be a invariant
which behaves similarly to HH(R,M) but understands the topology2 better. In particular, for this
topological version of Hochschild homology, the E∞-ring spectrum S would play the role of the
ring of integers Z.

The first construction of this topological Hochschild homology, denoted THH, is due to Bökstedt
who also made the first important computations. For a connective E∞-ring spectrum R, it was
shown that there is a map

K(R) −→ THH(R)
which is usually called the Dennis trace map. Setting up the theory correctly, one sees that this is
a map of spectra. Again, there is a S1-action at the target, and one can extract a new spectrum
TC−(R), negative topological cyclic homology; here a twist to the story appears: the S1-spectrum
THH(R) has even more structure. Indeed, in the homotopy world lives the Tate construction
(−)tCp , an endofunctor of S1-spectra and there are S1-equivariant maps

ϕp : THH(R) −→ THH(R)tCp

Such a structure cannot be seen on HH: one way to understand this is to remark that due to
blue-shifting phenomena, the Tate construction vanishes rationally and HH is only equipped to
understand K-theory rationally. The ϕp are functorial and endow THH(R) with a cyclotomic
structure and, though it is slightly more complicated, though of a similar flavor, than taking
homotopy fixed points, one can extract another spectrum TC(R), topological cyclic homology, out
of this structure so that the Dennis trace factors through as a map

K(R) −→ TC(R)

which is called the cyclotomic trace map. The upshot of this homotopy-upgrade-program is a result
of Dundas-Goodwillie-McCarthy [DGM13], stating that the following square

K(R⊕M) TC(R⊕M)

K(R) TC(R)

2Actually, it would probably fit better to say the “homotopy”: although the two are tightly interlinked, it is the
former that is more at the heart of this refinement but given the interests of Waldhausen and how early this name
was coined, the resulting invariant was called THH and not HHH.
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is cartesian. In other words, Goodwillie’s rational result can be upgraded to an integral statement
when passing to topological versions of all the invariants on the Hochschild homology side.

This result leads a treasure-trove of new computations in K-theory, featuring prominently in
[AKN24] which computes K(Z/pn) or in a more conceptual way, in [BHLS23], which disproves
an old conjecture of chromatic homotopy theory, the telescope conjecture, by understanding suffi-
ciently finely the K-theory of a specific ring spectrum through a good understanding of its topo-
logical cyclic homology.

The Dundas-Goodwillie-McCarthy theorem itself sits atop a heap of arduous and often technical
arguments, the setting of which having grown out of fashion thanks to the recent development of
higher category theory and homotopy theory – making its proof hard to access for newcomers. Also,
where as the early parts of our exposition were categorical, sometimes even enjoying universal
properties, the historical approach to trace methods relies on connective ring spectra so that
simplicial constructions and subsequent comparisons can be performed between related K-theoretic
objects.

The goal of this text is twofold: we want to generalize the many statements of trace methods
to more general objects but also, and maybe even more importantly, we want to shift the brunt
of the proof away from the “innards of K-theory”. By this, we mean that our proof strategies will
be leveraging the fact that in a suitably general context, all the objects of the story of trace enjoy
universal properties. The paradigm shift can be resumed as follows: we will prove results about
the properties of K-theory to understand it better, rather than on the object itself. Incidentally,
this means our story is much more model-independent.

We claim, and hope to demonstrate in what follows, that this makes the arguments simpler,
at least if one is only interested in recovering the results that are already known. The “deal with
the devil” we have made is that our proofs will therefore rely on the higher categorical world and
cannot be used without this context; this is little to give up in our minds, especially given the
growing interest in so-called higher algebra.

1.2 Structure of the thesis

Before we explain the content of the thesis, let us draw the following diagram explaining the
structure of the manuscript:

§3

[HNS24] §4 [HNS25]

§5 §6

§7 [Sau23b] [SW25]

§8 §9 §10

§11

The section §2 is a short recollection of the preliminary notions that are used throughout the thesis.
Plain lines indicate logical dependency whereas dotted lines serve to indicate which sections of thesis
are contained in which preprints and/or publications.

Though it is still in project at the time of writing, we plan to include §9, §11 (and whatever
part §8 which does not make it into [HNS25]).

Vertical columns serve to indicate sections that go together: §3-5 are about setting up laced
K-theory and its linearization. §6-8 seek to investigate the link between higher derivatives of laced
K-theory and extra structure on its first derivative; they also investigate the related question for
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laced topological Hochschild homology as a functor to genuine cyclotomic spectra. §9 develops an
abstract criterion to check that a functor converges partially to the limit of its Taylor tower. §10
develops the theory of heart structures and proves resolutions theorems for laced K-theory and
laced THH. Finally, §11 checks that heart structures can be used to produce a setting in which the
criterion of §9 holds so that the knowledge of the Taylor towers acquired in §8 provides a concrete
pullback square of spectra linking K-theory and topological cyclic homology.

Finally, let us point of that four Theorems are left unproven and at the time of writing, their
proof is not yet available (they will be proven in [HNS25]): these are Theorems 7.18, 7.25, 7.28
and 8.4 — they impact only the proof of the main result, namely Theorem 11.4.

1.3 Survey of the results

Let us now come to the content of this work. The results listed in what follows, have been (or
for some at the time of writing, will be) also recorded in the following articles [HNS24, HNS25,
Sau23b, SW25], except for the result about convergence of Goodwillie-Taylor for which another
article be written but too far in the future for us to give a reference.

The central idea we want to push is that trace methods is a categorification of the phenomena
highlighted at the beginning of the introduction, relating determinants and traces. Hence, to be
pursued the most successfully and the most efficiently, it is important to build the correct categories
to host our invariants and this is what is usually the hardest part of the work.

The first element we want to categorify is the operation id +tM for a small t. For rings, there is
a well-known construction that plays this role: given a R-bimodule M , one can endow the abelian
group R ⊕M with a ring structure such that the projection R ⊕M → R is a ring map and the
square of two elements of M is zero, hence the name of (split) square-zero extensions. Such split
square-zero extensions have been thoroughly studied, and in the homotopical context which we
care about, Lurie provides in [Lur17a] an abstract framework to produce square-zero extensions in
a general presentable category C.

Given R ∈ AlgE1(Sp), the category Bimod(R) can be obtained by stabilizing AlgE1(Sp)/R and
the canonical Ω∞ : Bimod(R)→ AlgE1(Sp)/R coincides with the usual split square zero extension
of rings and the more general one defined in loc. cit. for ring spectra. In general, if X ∈ C, Lurie
write TXC for the stabilization of C/X (or equivalently CX//X); such an association is functorial in
X and the functor unstraightens to a fibration denoted TC → C. Our first result is as follows, see
Proposition 3.3 and Proposition 3.12:

Proposition 1.1 — Harpaz-Nikolaus-S. Let C ∈ CatEx. There is an equivalence of categories

TCCatEx ≃ FunEx(Cop ⊗ C,Sp) ≃ FunEx(C, Ind(C))

and the square-zero extension functor is given by Lace(C,−), which fits in the following pullback
square for M : C → Ind C:

Lace(C,M) Ind(C)∆1

C Ind(C)× Ind(C)(j,M)

In particular, if C = Perf(R) and M is a R-bimodule, then we have

Lace(Perf(R),M ⊗R −) ≃ End(R,M)

We see from the above result that already at its beginning, our formalism achieved an inter-
esting thing: it unified the two potential candidates for a square-zero extension that differed by a
shift in the world of rings: R⊕M and End(R,M).

We call the category TCatEx, bundled from the TCCatEx over CatEx, the tangent bundle of
CatEx. We also coin a name for its objects: a pair (C,M) is called a laced category, so that TCatEx

is also the category of laced categories. The functors Lace(C,−) can be upgraded to a global right
adjoint functor Lace : TCatEx → CatEx, whose left adjoint is the cotangent complex, explicitly
given by L : C 7→ (C,mapC).
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Left Kan extending along the cotangent complex, or equivalently precomposing by Lace, we
can lift any invariant of CatEx to a laced invariant TCatEx → Sp. Namely:

Definition 1.2 We let laced K-theory be the composite functor

Klace : TCatEx CatEx SpLace K

There is a notion of laced-additivity for invariants out of TCatEx, inspired by the additivity
which gives K : CatEx → Sp its universal property in [BGT13].

Definition 1.3 Let (C,M) be a laced category. A laced semi-orthogonal decomposition of (C,M)
is a pair of laced categories ((A, N); (B, P )) with the following extra data and conditions:

(Underlying) The underlying pair of stable categories (A,B) is a semi-orthogonal decom-
position of C.

(Laced sub-categories) The inclusions refine to laced functors (i, α) : (A, N)→ (C,M) and
(j, β) : (B, P ) → (C,M) where α : N ≃ M ◦ (iop × i) and β : P ≃ M ◦ (jop × j) are
equivalences.

(Laced semi-orthogonality) For every A ∈ A and B ∈ B, M(A,B) ≃ 0.

Every such decomposition induces an exact sequence in TCatEx

(A, N) (C,M) (B, P )

where the first map is induced by the inclusion and the second by the adjoint to the inclusion.
In particular, the adjoints to the inclusion are also laced functors so that the whole underlying
additive sequence lifts to TCatEx.

One can show that the adjunction L ⊣ Lace preserves additive sequences, so that Klace is still
additive. In fact, we have better by very little more work, see Theorem 4.10:

Theorem 1.4 — Harpaz-Nikolaus-S. The natural transformation Σ∞
+ ιLace −→ Klace is initial

among transformations Σ∞
+ ιLace→ F where F is laced-additive.

Moreover, there is a lax-monoidal structure on Klace which makes it the initial lax-monoidal
laced-additive functor TCatEx → Sp.

Here, the lax-monoidality is with respect to a symmetric monoidal structure on TCatEx which
is straightforward to set-up, and compatible with that of CatEx.

It follows from abstract considerations that there exists a functor Pfbw
1 Klace, called stable K-

theory, and a natural transformation Klace → Pfbw
1 Klace which is initial among natural transfor-

mation with source Klace and target a functor which is fiberwise-exact (see Lemma 5.26). Here
fiberwise-exactness refers to the exactness of every F (C,−) : TCCatEx → E where F : TCatEx → E
is some functor to a stable category. Using the above theorem and the compatibility of the for-
mation of fiberwise-exact approximations, one can show that Pfbw

1 Klace also has the following
universal property: the natural transformation it receives from Σ∞

+ ιLace is initial within those
whose target is a laced-additive, fiberwise-exact functor.

We seek to understand more precisely the interaction between the additivity and the fiberwise-
exactness condition. We note the following: there is a laced-category (C,M)([1],∗) whose underlying
category is Ar(C) and whose bimodule is given by

M ([1],∗)(f : X → Y, g : X ′ → Y ′) := M(Y,X ′)

This category admits a semi-orthogonal decomposition by (C, 0) and (C,M) so that fiberwise-
reduced, additive invariant send the two maps (C,M)([1],∗) → C to an equivalence.

Definition 1.5 We say that a functor F : TCatEx → E is trace-like if it inverts the laced functors

d0, d1 : (C,M)([1],∗) −→ C
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for every (C,M).
This is not quite how this notion is defined in Definition 5.15, but Proposition 5.17 guarantees

it agrees with it.
In particular, we can interpret this as some kind of homotopy-invariance for a funny type of

homotopy: namely a trace homotopy, i.e. a functor H : (D, N)→ (C,M)([1],∗), can be thought as a
homotopy between the two possible composite (D, N) → (C,M) and trace-like functors are those
invariant under such trace homotopies.

By constructing the associated simplicial object (C,M)([n],∗), we can give a construction of the
way to force a functor to be trace-like, see Theorem 5.21:

Theorem 1.6 — Harpaz-Nikolaus-S. Let F : TCatEx → E be any functor. Then, there exists
an initial natural transformation with source F whose target is a trace-like invariant, denoted
F → cyc(F ) and its target cyc(F ) satisfies:

cyc(F )(C,M) :=
∣∣∣∣F ((C,M)([•],∗)

) ∣∣∣∣
for every laced (C,M).

Putting ιLace into the above machine, we get a invariant usually known as unstable topological
Hochschild homology, denoted uTHH. It follows that THH, by definition the fiberwise-exact ap-
proximation of Σ∞

+ uTHH — but using the previously-given formula for cyc, we will show that it
coincides with the well-known construction of such a functor — is the initial trace-like, fiberwise-
exact functor. Note that by the above considerations, we know those properties are implied by
fiberwise-exact, laced-additivity so that THH receives an essentially unique natural transformation
from Pfbw

1 Klace under Σ∞
+ ιLace. Actually, it turns out that those properties also imply fiberwise-

exact and laced-additivity, see Theorem 5.33 and Corollary 5.34 in the text:

Theorem 1.7 — Harpaz-Nikolaus-S. Let F : TCatEx → E be a fiberwise-exact functor. Then, F
is laced-additive if and only if F is trace-like.

In particular, the map Klace −→ THH identifies its target as the fiberwise-exact approxima-
tion of its source, i.e. there is a canonical equivalence Pfbw

1 Klace ≃ THH.

This last identification is precisely a generalization of the identification between stable K-theory
and THH of [DM94]. Let us note two things about the proof. First, this proof has never quite
“looked inside” both Klace and THH, except to check that the old construction had the wanted
universal properties: the crux of it is the comparison of two properties, trace-like and additivity,
which coincide under the further hypothesis of fiberwise-exactness. Second, our strategy is quite
all-or-nothing: we can only compute the exact approximation of Klace(C,−) because we can make
C vary.

This is how far we will go into trace methods by staying in the world of laced categories. More
precisely, although we will attempt to show how some ideas and computations can be made, it
becomes increasingly tedious not to take the following change of point of view: we consider laced
categories as graphs with one vertex with value C and one map from the vertex to itself, with value
the (C, C)-bimodule M .

To generalize, we consider cyclic graphs of arbitrary (finite) sizes, with arrows given by (C,D)-
bimodules where C,D are the values of the adjacent vertices. These cyclic graphs have a number of
natural operations: contractions and degeneracies which we can encode via a simplicial structure,
rotation which we can encode via a cyclic structure using Connes’ cyclic category Λ, and degree k
maps which we can encode via Goodwillie’s epicyclic category Λepi.

We have the following, which is the content of Lemma 7.2, Proposition 7.4 and Proposition 7.5:

Proposition 1.8 — Harpaz-Nikolaus-S. There is a commutative diagram whose squares are pull-

9



back and vertical arrows are cocartesian fibrations:

TCatEx THH∆(CatEx) THHΛ(CatEx) THHepi(CatEx)

{∗} ∆op Λop (Λepi)op[0]

Over some [n] ∈ ∆, the common fiber of the latter three cocartesian fibrations is the unstraight-
ening of the functor whose value on object is given by:

(CatEx)n+1 −→ CAT

(C0, ..., Cn) 7−→
∏

i∈Z/nZ

FunEx(Cop
i ⊗ Ci+1,Sp)

The names THH∗(CatEx) have been suggestively chosen to indicate that those categories are 2-
categorical versions of THH (in a similar, though not precisely the same, way to Ponto-Shulman’s
THH of bicategories, see [PS13]). More precisely, as the unstraightening of a simplicial object,
THH∆(CatEx) is an oplax geometric realization whose simplicies are quite similar to a cyclic Bar
construction; moreover, this simplicial object is in fact restricted from a cyclic, and in fact an
epicyclic object, which entails to extra-structure.

Concretely, an object of THH∆(CatEx) living over [n] ∈ ∆ is the datum of a cyclic graph:

C1

C2

C3

Ci

Cn

where each Ci is a stable category and each arrow corresponds to a point Mi ∈ FunEx(Cop
i ⊗Ci+1,Sp)

or equivalently a continuous functor Mi : Ind(Ci+1) → Ind(Ci) (note the order reversal). In the
fiber over [n] ∈ ∆, maps are given by exact functors between the vertices and lax-commuting
squares between each bimodule. To finish the description, let us also comment on the cocartesian
edges: those living over a face compose the identified arrows whereas those over a degeneracy add
bimodules equal to the identity in the graph.

The passage to THHΛ(CatEx) add new cocartesian edges corresponding to rotations of the
graph and further going to THHepi(CatEx), one has access to n-fold covers of the circle as cocarte-
sian edges, where n ∈ N is the degree of the underlying map of circles.

Definition 1.9 A functor F : THH∆(CatEx) → E is cyclic-invariant if it inverts cocartesian
arrows over ∆op.

Similarly, a functor F : THHΛ(CatEx) → E is cyclic-invariant if it inverts cocartesian
arrows over Λop.

Finally, a functor F : THHepi(CatEx)→ E is cyclic-invariant if it inverts cocartesian arrows
over degree 1 maps, i.e. precisely those in the image of Λ→ Λepi.

Note that the localization of THH∆(CatEx) at the cocartesian edges is the actual colimit of
the simplicial object it unstraightens, and similarly for THHΛ(CatEx). In particular, the category

Funcyc(THH∆(CatEx), E)

carries a canonical S1-action. Because we have not quite asked for all the cocartesian edges of
THHepi(CatEx), the extra-structure entailed by the epicyclic refinement is an oplax action of
the Witt monoid Wop := (S1 ⋊N×)op such that the S1-part recovers the previously mentioned
S1-action.
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We can identify the extra-structure endowed onto a functor THH∆(CatEx) which is a fixed-
point for the previous (oplax) actions as follows, see Proposition 7.7 and Proposition 7.10 and
Proposition 7.15 in the text:

Theorem 1.10 — Harpaz-Nikolaus-S. The functors of Proposition 1.8 induce the following equiv-
alences: {

Trace-like
F : TCatEx → E

}
≃

{
F : THH∆(CatEx)→ E which invert

cocartesian edges over surjections in ∆op

}
{

Cyclic-invariant
F : THHΛ(CatEx)→ E

}
≃

{
Fixed points for the S1-action on

cyclic-invariant F : THH∆(CatEx)→ E

}
{

Cyclic-invariant
F : THHepi(CatEx)→ E

}
≃

{
Oplax-fixed points for the Wop-action on
cyclic-invariant F : THH∆(CatEx)→ E

}
via restriction.

In particular, we can also talk about cyclic invariant functors on TCatEx by simply specifying
that they correspond to cyclic-invariant functors on THH∆(CatEx) — in fact, there is also a more
down-to-earth way of defining this property.

Via the first equivalence, we can transfer the structure of a lax fixed point for the Wop-action to
the restricted functor F : TCatEx → E . This canonically promotes F to a functor F : TCatEx →
GenPgcFr(E) valued in genuine polygonic objects in E with Frobenius lifts, which is made concrete
in the bullet points below. This is in particular the case of cyclic K-theory, the split-fiber of
Klace(C,M)→ K(C).

In this thesis, we do not build the category of genuine polygonic objects with Frobenius lifts,
nor do we give a precise, functorial proof of Theorem 1.10. This is for a handful of reasons: the
first is that the proof (actually, even the statement) involves a lot of extraneous technology about
2-categories that has not been worked out so far, and we have enough on our plate to not have to
develop on one’s own the theory of 2-categories to the point we need it to be. We note that such
attempts at developing this technology have been made in the preprint [AMGR17], to tackle the
cyclotomic part of the story, but the proofs therein do not have the degree of precision we strive
for.

The second reason is that we want to give a less precise but more low-to-the-ground approach
to understand what is going on (and why we need the level of technology that we claim) which
will hopefully complement the literature we will later produce and be a more gentle introduction
to it. Finally, we note that we will prove those precise statement later, in a series of articles joint
with Yonatan Harpaz and Thomas Nikolaus, provisionally cited as [HNS25].

Having said this, if we forget about some of the coherences, here is what this structure entails
to: given a cyclic-invariant F : THHepi(CatEx) → E , its restriction to TCatEx has the following
supplementary features:

• For every (C,M) laced category, F (C,M⊗n) has an action of the cyclic group Cn.

• When M = id, all the possible Cn-actions arise from the restriction of a S1-action

• For every (C,M) laced category and n, k ≥ 1, there is a canonical Cn-equivariant map

F (C,M⊗n) −→ F (C,M⊗nk)hCk

• When M = id, the above maps for varying n are given by forgetting the equivariant structure
from a S1-equivariant map:

F (C, id) −→ F (C, id)hS1

The first and third points characterize the datum contained in a genuine polygonic structure
with Frobenius lifts, i.e. the lift to a functor F : TCatEx → GenPgc(E), whereas the refined
structure on the restriction C 7→ F (C, id) is usually known as a genuine cyclotomic structure with
Frobenius lifts. One can show that every localizing invariant F : CatEx → E gives rises to a
cyclic-invariant F : THHepi(CatEx)→ E whose restriction to the tangent bundle is given by

F cyc(C,M) := fib(F (Lace(C,M))→ F (C))

11



Thus, the functor on TCatEx F cyc inherits extra structure.
Genuine polygonic objects with Frobenius lifts correspond to a special class of genuine polygonic

objects which we will again not construct precisely in this thesis; roughly, by post-composing the
structural maps by the canonical

XhCk −→ XτCk

where (−)τCk denotes the proper Tate construction of Ck, one turns every object of GenPgcFr(E)
into a genuine polygonic object whose category is denoted GenPgc(E). This latter category happens
to be better behaved relative to linearization, notably because the endofunctor of Sp given by

X 7−→ (X⊗k)τCk

is exact. In particular, one can show that linearization preserves the genuine polygonic structure
on F cyc but in general, kills the Frobenius lifts i.e. the maps to the proper Tate construction of
the linearization need no longer factor through homotopy fixed points. This leads to the following
theorem, see Theorem 7.18:

Theorem 1.11 — Harpaz-Nikolaus-S. Let F : CatEx → E be a Verdier-localizing functor. Then,
Pfbw

1 F lace upgrades to a functor

Pfbw
1 F lace : TCatEx −→ GenPgc(E)

such that the canonical map F cyc → Pfbw
1 F lace upgrades to a map of genuine polygonic objects,

where F cyc is given its above-mentioned structure with Frobenius lifts.

In particular, the trivial structure functor triv : E → GenPgc(E) has a right adjoint given by
TR. In fact, truncating the genuine polygonic structure to only keep the n first objects, one gets
a tower

TR lim
n∈N∗

(
... TR[n] trunc[n] ... TR[1] trunc[1] ≃ fgt1

)
≃

whose limit is TR. It follows from the Theorem that we have a canonical map

F lace(C,M) −→ TR(Pfbw
1 F lace(C,M))

natural in (C,M), which even factors through F cyc(C,M). Here trunc[n] denotes the truncation
functor, which we will most often suppress from the notation. We claim that the previous structure
on Pfbw

1 F lace allows us to recover the higher derivatives, a surprising phenomenon since there are
many functors whose first derivative does not tell you all there is to know about their Taylor tower.
This can be seen as a similar phenomenon as the main results of [Goo91], where the key point
saving us is that we can interplay the different C to get this extra-structure.

This is encapsulated by the following result, see also Proposition 7.27 and Theorem 7.28 in the
text:

Theorem 1.12 — Harpaz-Nikolaus-S. Let F : CatEx → E be a finitary Verdier-localizing functor.
Then, there is a pullback square

Pfbw
n F lace (Pfbw

1 F lace)hCn

Pfbw
n−1F

lace (Pfbw
1 F lace)tCn

which identifies Pfbw
n F lace with TR[n](Pfbw

1 F lace). In particular, we find that the previous map

F lace −→ TR(Pfbw
1 F lace)

is the canonical map of F lace to the limit of its Taylor tower.

12



Corollary 1.13 The limit of the Taylor tower of laced K-theory Klace(C,M) is TR(C,M), for
(C,M) a laced category.

In particular, we recover the computation of Lindenstrauss-McCarthy [LM12] of the Taylor
tower of K-theory for connective ring spectra. Moreover, this result gives a particularly nice
insight on the extra structure on THH:

Slogan The (genuine) polygonic structure on THH(C,M) encodes precisely the Taylor tower
of laced K-theory.

Remark that the nth-homogeneous layer of the Taylor tower is given by THH(C,M⊗n)hCn

which precisely categorifies the nth-homogeneous piece in the formula given for the (logarithm of
the) determinant via traces of iterated powers of Equation 1. In particular, we think about this
slogan as some categorified version of a previously stated slogan.

The last question we have not tackled yet is: “When does K-theory coincide with the limit of its
Taylor tower?”; in analogy with usual calculus, we will call such a property analyticity. The first
attempts at understanding the relation between K-theory and TR were undertook by Almkvist, see
[Alm78], where he compared in our notation π0 Kcyc(Perf(R), id) and π0 TR(Perf(R), id), which is
the Witt vectors of R. The former is identified to rational Witt vectors. We also point the reader
to [DKNP22] and its follow-up [DKNP23] where this comparison is also done with coefficients, and
in a language closer to ours.

The upshot of those results is that

Kcyc(C,M) TR(C,M)

is not an equivalence when C = Perf(R) and M is R viewed as a R-bimodule. However, the differ-
ence comes down to one side being rational and the other complete with respect to the t-topology.
One could hope that if M was more highly connective, then the growth in connectivity of M⊗n

would enforce some sort of nilpotence which makes everything rational.

This is indeed what happens, and we claim this is a very general phenomenon. By working
through the ideas of Goodwillie in [Goo91] and adapting them to the higher categorical world, we
have the following criterion, see Theorem 9.19 in the text:

Theorem 1.14 Suppose C≥0 ⊂ C is a full stable subcategory closed under colimits and F : C → D
is a functor to a presentable stable category with a right-complete t-structure compatible with
filtered colimits. Suppose that

• F is reduced

• F sends C≥0 to connective objects in D

• F preserves sifted colimits of objects of C≥0

Then, F converges with the limit of its Taylor tower on C≥1, i.e. on suspensions of objects of
C≥0.

Remark that the first condition is easily enforced: for every F : TCatEx → E , there is a func-
tor F red such that F red(C, 0) ≃ 0 and a natural splitting F red(C,M) ⊕ F (C, 0); moreover, F and
F red have the same Taylor tower. The second condition is a bit stronger, but can be replaced
by sending C≥0 to uniformly bounded below objects in D, by shifting the t-structure on the tar-
get. The most stringent condition is the third one, and it is usually the hardest to check in practice.

Our goal is to apply this criterion to the functor Klace(C,−). For this, we have to find a special
subcategory of non-negative bimodules and show that Klace satisfies the third condition.

If C is the stable envelope of an additive category A, then C-bimodule correspond to direct-sum
preserving functors Aop×A → Sp and there is a very natural full subcategory closed under colimits
of this: those functors that land in connective spectra. In fact, in this case, this category is the
connective part of a t-structure on the category of C-bimodules.
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More generally, we have shown the following in [Sau23b, SW25], which is also cursorily explained
in Corollary 10.11, Theorem 10.15 for the first part and Lemma 10.21 for the claim about Lace:

Theorem 1.15 — S.-Winges. Let E be a weakly-idempotent exact category. Then, specifying an
equivalence C ≃ Stab(E) between a stable category and the stable envelope of E is the same
thing as specifying a bounded heart structure on C whose heart is E , i.e. there is an equivalence
of categories

Exactw−i
∞ ≃ (CatEx)bdd−♡

between the category of weakly-idempotent exact categories and the category of stable categories
equipped with a bounded-heart structure and functor preserving the heart.

Moreover, if C has a bounded heart structure and M is a C-bimodule that sends E to con-
nective spectra, then Lace(C,M) inherits a bounded heart structure.

Here, the weakly-idempotent condition on E is asking that every retraction of E splits: if the
retraction has a fiber or a cofiber, then this is imply by the splitting lemma but there is not in
general enough fibers in a general exact category E to make this work.

Note that if E is only exact, it need no longer be true that those Stab(E)-bimodule which
send E to connective spectra form the connective part of a t-structure. Indeed, the operation
ι≥0τ≥0 : Sp→ Sp which truncates and then re-includes into the category of spectra only preserves
direct sums, but not exact sequences in general. Still, such bimodules do form a well-defined cat-
egory Bimod(Stab(E))≥0 which is closed under colimits.

We are able to show that both Klace and THHlace := THH ◦Lace have a (concrete) extension to
exact categories which send the map E → Stab(E) to an equivalence. This affords models that are
easier to manipulate and, via the only argument so-far which actually uses a concrete construction
of the above functors, we can show the following, which is spelled out in Proposition 11.2:

Theorem 1.16 Suppose C has a bounded heart structure and denote Bimod(C)≥0 the category
of those bimodules M which send the heart to connective spectra.

Then, both Klace(C,−) and THHlace(C,−) verify the hypotheses of Theorem 1.14 up to the
remarks formulated immediately afterwards.

Corollary 1.17 If C has a bounded heart structure such that M sends the heart to 1-connective
spectra, the map

Kcyc(C,M) TR(C,M)

is an equivalence.

To get to the final result of this thesis, it remains to explain what is the Taylor tower of
THHlace(C,−). By previous considerations, THH : CatEx → Sp lifts to a category of genuine
cyclotomic spectra. Any genuine cyclotomic spectra can be viewed as a genuine polygonic object
and this functor admits a right adjoint denoted R. One can show (but we won’t do it precisely
in the thesis) that the Taylor tower of THHlace is given by RTHH(C,M), where THH(C,M) is
endowed with its usual3 genuine polygonic structure.

In particular, applying TC to the Taylor tower of THHlace recovers TR, which is also the Taylor
tower of K-theory. Hence, when Klace and THHlace are analytic, we have the following, which is
Theorem 11.4 in the text:

Theorem 1.18 Let C be a bounded heart category and M a C-bimodule which carries the heart
to Sp≥1. Then,

K(Lace(C,M)) TC(Lace(C,M))

K(C) TC(C)

is a pullback square.

3Here, “usual” is in the sense of we defined it a couple of Theorems ago
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This is a generalization of the split-square zero case of the main result of [DGM13], which
we have recalled previously in the introduction, and taking the above structure to be a weight
structure, we also get a generalization of the split-square zero case of [ES21]. In particular,
we stress that for rings and connective bimodules, the above gives the split square-zero case of
Dundas-Goodwillie-McCarthy thanks to the shift in the identification between Perf(R ⊕M) and
Lace(Perf(R),ΣM ⊗R −).

1.4 Glimpses of the future
There are still many open questions and directions to pursue the above works. Let us go

through them, loosely ordered by either urgency or simplicity.
Theorem 1.18 is about split square-zero extensions, but the full Dundas–Goodwillie–McCarthy

usually involves about nilpotent extensions, i.e. maps A → B of connective ring spectra which
are surjective on π0 with nilpotent kernel, the case of non-necessarily split square-zero extension
being the case where the ideal I2 = 0. It is less clear what is supposed to play the role of general
nilpotent extensions of bounded heart categories: there is an abstract definition, following the
general theory of square-zero extensions as in [Lur17a, Section 7.4].

In a more concrete approach, [ES21] also have a concrete definition for such extensions, at
least when restricted to bounded weight structure. We do not know whether the abstract and
the concrete definition coincide; moreover, the concrete approach does not quite track to a similar
proof of Dundas-Goodwillie-McCarthy, though we have been made aware of on-going work of Levy
and Sosnilo tackling this direction.

Another direction follows the ideas introduced by Efimov in [Efi24], and pertains to the exten-
sion of non-connective K-theory and more generally, localizing invariants to dualizable categories.
The machinery of the present text is geared towards connective K-theory because Klace has a uni-
versal property in TCatEx, which is not the case of K ◦ Lace; in fact, the latter need not even be
localizing because Lace does not preserve Karoubi sequences (in fact even some Verdier sequences,
as is explained in the text).

In on-going work, we want to investigate the trace-methods questions of dualizable category:
what is the tangent bundle of Prdual, what is Lacedual, its square-zero extension functor, and how
much of the theory changes in this set-up. Early parts of the investigation suggests although there
is an equivalence

TCPrdual ≃ EndL(C)

for C dualizable, so that in particular Ind preserves the tangent category, the dualizable square-
zero extension funcotr Lacedual(C,M) is almost never compactly-generated even though its com-
pact objects are Lace(Cω,M) so the theory does differ. We do not quite know whether Lacedual
sends Karoubi sequences of laced-dualizable categories to Karoubi sequences in Prdual: by as-
of-yet unpublished work of Efimov, this is akin to ask whether Lacedual will behave closer to
MapPrdual(Perf(S[t]),−) or MapPrdual(Nuc(S[t]),−). In his work, Efimov shows the former need
not preserve Karoubi-sequences but the second does; moreover, the Karoubi-approximation of the
first when passing to localizing motives is given by the second and coincides with curves on K-
theory (plus a constant term), as defined for instance in [McC23] which also showcase that there
are trace methods ideas that apply to this functor.

Whether Lacedual has the wanted property or not, it is reasonable to expect trace-methods
to give new and interesting results to compute K(C) for C a genuinely new object (dualizable
non-compactly generated) that is not captured by usual small trace-methods.

We also want to note that in the not-yet-publicly-available [HNS23], two of the coauthors of
some of the material presented in this text as well as Jay Shah, have undertook the study of
hermitian trace methods, following the bulk of work done in [CDH+23a, CDH+23b, CDH+23c] to
push the hermitian story to a similar realm as the algebraic K-theory one. This study has evolved
to resemble a lot in the techniques the ones used in here, though the author admits to lack the
precise knowledge of what changes in the Poincaré setting.

Finally, there are obvious constructions and candidates for theories of non-commutative motives
in trace-methods. The landscape in non-commutative motives has changed dramatically as this
manuscript was being written: the main theorem of [RSW25] shows that the category of localizing
motives is actually a localization of Catperf and in upcoming work, Efimov has managed to compute
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mapping spaces of localizing κ-motives (this is related to a previous point) as well as showing that
they form a large rigid category.

The perspective of the former is quite interesting: in the trace-methods world, quite many con-
ditions were phrased purely in terms of inverting a collection of arrows (see all the variants of cyclic
and trace invariance), leading to some trace-like motives, and one can further add adjectives to give
different flavours to the theory. In particular, one of the main results of Ramzi’s thesis [Ram24a]
shows that the category of trace-invariant, fiberwise-colimit preserving functors is precisely given
by Sp (or SpBS

1
, GenCyc(Sp) when trace-invariance is understood in some THHsymbol(CatEx)

and not just in TCatEx). However, when removing or altering some adjectives in the above, the
result is no longer known and it is yet unclear

1.5 Acknowledgments.
The acknowledgments of this thesis are given by the initial set of acknowledgments receiving

a name-preserving morphism from the list of people who have helped the author through his
mathematical and non-mathematical journey (suitably completed at every forgotten memory).
Note that in this manuscript, all acknowledgments are supposed to be well-written which is not
restrictive since there is a functorial, colimit-preserving way of achieving this, often called proof-
reading — we will always implicitly apply this functor to all our acknowledgments.

Even though his commitment to the joke tempts the author to not say more, below we sketch a
construction that the set of acknowledgments characterized by the previous property does indeed
exist. This is done by brute force (and faltering memory).

As any good list of names in mathematics, the following ordering is alphabetical. Souvent,
on regroupe d’abord les gens sous un groupe commun (e.g. ’PhD students’) and then order their
names; also the language is adapted et change de manière fluide to best suit la personne visée.
Tout oubli is fully la responsability de l’auteur et il s’en excuse wholeheartedly. Leider ist meine
Deutsch nicht gut genug, um mehr als diese Worte zu schreiben.

In Bonn, I want to thank Christian Kremer, Dominik Kirsten, Kaif Hilman and Jonas Mc-
Candless for their warm welcome, their exchange of ideas and the many moments that made me
feel for the first time that I was part of a community of mathematicians across the world.

Parmi les Doctorants de l’équipe TA, il me faut citer Benachir El Allaoui mais qu’à partir
de 14h, Coline Emprin, Oisin Flynn-Connolly with whom I spent so long chatting about every
possible subject between the coffee machine and my desk so much so that I would look up the
news in the morning just to prepare those moments (why did they reelect Trump when you left, we
could have said so much ...) — also, I must thank him for the name laced categories; what a find!,
Nic□las Guès pour les cubes et les cubes, Marcus Nicolas pour pour sa capacité sans fin à poser des
questions intéressantes, Hugo Pourcelot pour l’accueil et les conseils prodigués en début de thèse,
Francesca Pratali for her amazing positive presence and for the maths chat (the questions you
asked but also, near the end, the questions that I asked!), Dominik Schrimpel for having lighted
up the office during this fourth year, including (but not limited to) maths discussion, Jakob Ulmer
for a similar deed during the second and third year, as well as the few moments when he spoke to
me in German without realizing (I’m afraid this is going to be much more common soon), mais
aussi Victor Luca i Rocio et Guillaume Laplante-Anfossi.

Et parce qu’il n’y a pas que les maths dans la vie (il y a aussi l’innomable jeu de cartes), l’équipe
que je surnomme Doctorants Fun, où il me faut remercier l’inénarrable Wassim Aboussi, Arthur
Arnoult pour son courage sans faille (et sa maison aussi, enfin j’espère pour elle) ainsi que les
confitures de sa maman, Maissâ Boughrara pour ses nombreuses bonnes adresses de restaurant
dans Paris qui sont parfois un tout petit peu trop populaires, Elie Cerf malgré le fait que j’ai dû
me coltiner Lucas tout seul pendant la dernière année parce que môssieur ne voulait pas faire une
sixième année, Nicolas Conanec à qui on a déjà assez fait de blagues sur la Bretagne comme ça
mais attention, il pleut sur ta gauche, Loth Damagui Chabi pour ta ferveur supportrice (le PSG
a gagné la ligue des champions avant que je parte, c’est fou), Joelle Ishak oenologue de renom
et pétrie de qualités que je ne listerais pas pour ne pas faire de remarques superfétatoires, Lucas
Lagarde pour une quantité de blague à la limite de l’intankable, des gâteaux d’une saveur sans
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pareille (pardon Grégory) et ... ah j’ai un appel, oui allô, c’est les remerciments, ils ont eu un grave
accident d’écriture, ils ont besoin de 50€ pour être terminés (si tu relis ce message dans 10 ans,
change dans ta tête pour le shitpost du moment) — Julien Malartre qui est la seule autre personne
à avoir jamais suggéré d’aller manger avant 12h (merci!), David Nahmani à qui je lègue le flambeau
de Yu-Gi-Oh dans le groupe des doctorants (standby phase shifteur dimensionel, réponse?), Neige
Paulet , Romain Pinguet qui malgré tous ses efforts n’a pas réussi à sortir de l’équipe doctorants
fun, René Pfistcher for such a positive attitude towards math and life in general, Mathieu Vallée
qui est le seul doctorant non-mathématicien de cette liste, ce qui confirme un certain tropisme, et
enfin Vincent Viau à qui je souhaite de pouvoir continuer à pisser dans la Garonne, à collection-
ner des cartes Pokémon et dont les pendus vont me manquer, surtout quand ils sont interrompus
de manière inopiné. Enfin, j’ajoute à la liste Alice Contat et Vadim Lebovici qui sont à la lim-
ite de passer dans la team permanents (bravo encore) mais qui sont encore trop fun pour le moment.

In a team with significantly less members, but with an impact rivaling the others, from the
ERC group, I want to thank wholeheartedly Ran Azouri (but with the same caveat as Benachir,
see doctorant TA), Jordan Levin for three incredible years where I saw you become a fully-fledged
mathematician and I got to enjoy your remarkable company in the office and in our many trips
across Europe, how boring would those three years have been without your presence, Tasos Mouli-
nos whose time among us was cut short (but for happy reasons), and Guglielmo Nocera for his
upbeat attitude and his undaunted courage which led us to a wonderful paper on the assembly
map of bordism-invariant functors, which I can guarantee would not exist without your enthusiasm
and your fervor.

Dans l’équipe Equipe Topologie algébrique (oui c’est redondant mais dans cette équipe, on
est attaché à se rappeler quand on a des trucs en double), je veux remercier Gabriel Angelli-Knoll
for many coffee-machine chat and who also gets the privilege to top yet another list of names,
Christian Ausoni pour son attitude bienveillante qui m’a fait rencontrer Bjorn et m’a toujours
soutenu, Charles De Clerq dont je speedrun les remerciements sans pourtant autant oublier nos
discussions autour d’un café, Geoffroy Horel pour les échanges mathématiques autour d’un café (il
y a quelque chose avec le café dans ce labo, vous remarquerez), Anne Quéguiner-Mathieu et enfin
Bruno Vallette qui a toujours eu une anecdote ou un conseil à partager, et qui détient le record
d’être le seul à s’être jamais plaint de mon anglais en exposé. Les attentifs qui auront remarqué
qu’il manque deux joyeux larrons sont invités à lire le paragraphe suivant.

Dans ce qui pourrait s’apparanter à une sous-équipe de la précédente, mais qui mérite d’être
dans une league of its own comme ils disent de l’autre côté de la Manche, l’équipe Equipe TA,
Café, Chocolat et autres douceurs composé de deux membres, je veux remercier tout parti-
culièrement Grégory Ginot, à qui il m’est impossible de faire une liste complète tant elle serait
longue de toutes les fois où j’ai été ravi de le voir parce qu’il avait une tarte, un gâteau, du chocolat
ou une bonne nouvelle administrative à m’annoncer, à qui je dois mon introduction à la topologie
algébrique (et donc toute la suite) à une époque où le mot pandémie pouvait encore être confondu
par certains avec une maladie des pandas, et Eric Hoffbeck, l’homme qui murmure (avec Maher)
à l’oreille des machines à café, qui a aussi un stock sans fin de chocolat et qui a été à l’origine des
conseils les plus précieux que j’ai pu recevoir durant ma thèse.

Revenons à une équipe dont l’ancienneté fera palir toutes les autres, baptisé sobrement LLG,
dans laquelle je mets Nicolas Guérin, que les dieux ont généreusement décider de placer dans le
même RER B un jour de septembre 2015, avec qui on a fait les Cassini, les colles d’anglais, la boue
de la Courtine et la grèle sous la tour Eiffel, sans qui je serais un bien moindre mathématicien (du
genre qui simplifie dans L(E)) mais probablement aussi un être humain beaucoup moins intéres-
sant, Jean Rubin à qui aucun problème ne résiste (et pourtant, j’ai du écumer tous les magasins de
casse-tête de la capitale pour essayer) et qui a probablement fait reculé la science de 50 ans quand
il a décidé de ne pas faire une carrière en combinatoire (mais dont la contribution à l’INSEE a
certainement compensé pour ce qui en est de la société), Olivier Salagnac qui a bravé la 5/2 pour
rejoindre le groupe (ou plutôt pour garder son groupe de volleyeurs de la cours Molière préféré) et
sans lequel je ne pense pas que j’aurais pu supporter Nicolas dans sa phase shark. Je n’oublie pas
non plus Chloé, Foulques, Félix, Maxime, Téodora et Orso comme membre honoraires, bien qu’ils
soient nommé dans d’autres équipes.
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Dans l’équipe Maman qui ne comporte qu’elle, mais qui gagnerait avec aise contre toutes les
autres, je me dois de remercier une personne dont l’amour, la générosité et le soutien constant sont
autant de piliers sur lesquels je me suis appuyé.

And now for a team whose name is a mouthful, Mathematicians from afar but not Bonn
or Münster, whose contributions and/or discussions have influence either directly or indirectly
this manuscript, I thank Dhyan Aranya in Amsterdam, Baptiste Calmès in Lens though I’ve never
met him there, Emanuele Dotto in Warwick though Venice is truly the reason he is on this list
(and the math it allowed to happen there, this is not just to be reinvited), Fabian Hebestreit in
Bielefeld though this is written certainly before a lot of the anecdotes I would want to share have
happened, Ishan Levy when we met at YTM Münster, Zhouhang Mao in many places for the
countless questions and the sharp wit that has forced me to clarify and clear mistakes from my
mind so many times, and finally, there was almost a Regensburg team but they had the good idea
of sharing a general position in the alphabet, Pier Federico Pacchiarotti with an asterisk for War-
wick, Vova Sosnilo for countless enlightening discussion and Christoph Winges for an extremely
fruitful collaboration and just as much, if not more, ideas and words of mathematical wisdom.

The final team of maths people is Mathematics Münster where I want to thank Arthur
Bartels for his time chatting about assembly maps, Thomas Nikolaus which has been so important
to the realization of this very thesis and whose insight is almost unparalleled, Phil Pützstück who
has spotted more typos in this draft than anyone else and has generally been an incredibly nice
person to chat maths with, et finalement Maxime Ramzi, pour toutes les discussion sur les méth-
odes de traces qui ont aidé ce manuscript à grandir mais aussi pour toutes les autres échanges et les
moments partagés, la liste desquels je suis sûr que les années qui viennent ne feront qu’augmenter.

Another team without which this manuscript would be but a shadow of what it is are the two
Referees, namely Bjorn Dundas who is one of the kindest persons I have ever met, has shared
so many insights throughout our exchanges and to whom I still owe a drink of his choosing for
forcing to write recommendation letters in a hurry, as well as Marco Robalo who bombarded this
document with questions and remarks, improving tremendously the presentation and the clarity
of it — if you, reader, have an easier time going through it, it is thanks to him first and foremost.

Bien que leur contribution risque d’être effacé par l’histoire avec un grand H (pas celle qu’on
écrit maintenant, donc), l’équipe Restaurant, composée de l’indéboulonable Sandwich Poulet
(pouler ?) Mayo et de la boulangerie de Villetaneuse, qui a nourri l’auteur pendant plus d’un an
lorsque que le restaurant adminstratif a failli à ses devoirs (et c’est long, une année de poulet mayo
...)

A une équipe dont l’importance n’est pas compréhensible par qui n’a pas dû affronter les pièges
de l’administration française, les personels du Secrétariat et Administration, Leila pour sa pa-
tience infinie et sa capacité à m’aider alors même qu’elle devait apprendre les démarches quasiment
en même temps que moi, Monia pour m’avoir sortir du pétrin pour plusieurs missions, Yolande
pour sa gentillesse sans fin et les nombreuses discussions et les blagues qui ont animés chaque jour
de ma présence au LAGA, ainsi que Jean-Philippe et Sembala, le premier pour sa connaissance si
fine de l’adminstration française dont un diplôme ès chasse au pigeon et sa capacité à la partager
et le second pour sa patience et son soutien constant quand les choses ne marchent pas parce que
les dieux de Notilus étaient fâchés.

Enfin, une équipe au nom si court mais que j’apprécie si particulièrement, les X et notamment
ceux de la sections volley: Léo Baujeu qui m’a accueilli tant de fois avec Paul pour d’innombrables
jeux de sociétés et autres voyages en Ecosse, Guillaume Bourgarel que je suis toujours ravi de
recroiser dans Paris lorsqu’il le propose, Elias Khallouf que j’ai toujours plaisir à recroiser aléa-
toirement dans Paris au moment où je m’y attends le moins, Maixent Esmieu-Fournel pour toutes
les blagues et les moments de rigolade, Tom Jacquin avec qui j’ai partagé tant de parties de volley
endiablés parfois jusqu’au bout de la nuit (du volley (et littéralement, en plus)) et dont l’influence
sur mon humour a été significative (heureusement ou malheureusement, je laisserais l’intéressé en
décider), Rind El Hage pour laquelle I do not know whether je devrais écrire en anglais or in
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French, but in any case, a toujours le smile (celui-là marche dans les deux langues!) et à qui je
souhaite autant d’aventures que Zaki (c’est un écocup dans ta main?), Yahya Ibenbrahim qui est
tout aussi responsable que Tom pour certains traits d’humour ainsi que pour beaucoup de cour-
batures suites aux fameux volleys endiablés, Foulques Renard dont la curiosité n’a d’égale que sa
capacité de partage et qui continue de m’impressioner par sa faculté à se renouveler à chaque fois
que je le revois, Matthieu Rykner dulequel je suis très heureux d’avoir su me protéger de l’influence
dans le cadre de l’humour mais avec lequel je suis aussi très content de partager les boirs et le
déboirs rugballistique du stade, du XV de France et plus généralement du sport français (et bien-
tôt allemand, qui sait) — attention Rind a un écocup dans la main par contre, Michel Thomazo
pour lequel j’ai très peur de me planter sur le nombre d’enfants quand ces pages sont écrites mais
qui a toujours été si gentil et drôle que ce soit au volley ou ailleurs, Olivier Truffinet dont les
anecdotes légendaires ont égayés moultes conversations (même s’il faut lui reconnaître un certain
assagissement salutaire ces derniers temps) et qui ne cesse d’impressioner par sa curiosité et son
intérêt pour des mathématiques que je croyais impénétrables pour les non-initiés, Chloé Vernière,
qui a (!!!) et qui ne cessera certainement jamais d’avoir que ce soit pendant les volleys improvisés
sur la plage ou toute autre activité sportive ou non sportive. Je n’oublie pas Félix aussi, qui est de
l’année d’après ainsi que Nicolas, Jean et Geoffroy qui sont membres honorifiques de l’équipe, et
ont déjà été cités (désolé Olivier, peut-être en 7/2, s’il fait pas trop chaud pour l’oral de Chimie,
mais l’ENS c’est pas si mal non plus).

Finally, in the only other team with a single member, Yonatan Harpaz (whose first name
begins by a very late letter in the alphabet so that I can put him in the rightful place without
breaking this listing stuff in alphabetical order to pretend everyone contributed the same which
is so dear to mathematicians), whose only member is Yonatan Harpaz (unsurprisingly). This is
certainly the hardest one to write: I did not have many dreams throughout my childhood — I was
more of the small goals philosophy, slowly grinding through the steps — but I distinctly remember
more than ten years ago (ouch) thinking "I’d like to be a mathematician", which was quite an
incongruous dream back at the time, maybe even more because I understood it as "contributing
to research" aka "making a contribution of my own to this great thing which is the combined
knowledge accumulated by humankind over many centuries". I don’t think I quite believed in it
back then.

And through this document, but also the five preprints/publications and the many more that
are in preparation, this dream is about to become a reality and the prime contributor to this is none
other than you, Yonatan. During those four years, we exchanged so many emails, so many ideas,
we chatted about so many topics and you helped me every single time refine my understanding,
grow as a mathematician, as a scholar (the word is big but I can’t quite find something of the
same flavour right now). You were kind, caring and always pushed me in the right direction. I still
vividly remember when the project that ended up being this thesis but also our joint work with
Thomas and now Maxime started, in January of the first year, while we were in the restaurant
administratif of Paris 13. The spark that happened then was almost magical, and I am incredibly
proud of where we have carried it and incredibly thankful of how much love and care you poured
into the project to make it what it is. I would never have been able to reproduce this, even with
a thousand year to spare.

For this, but also for many others things, some that I forgot and some that I do not have the
place to list, I extend to you my gratitude, and I hope that in the many years to come, which I hope
will be filled to the brim with mathematics, that we will get to experience again those moments,
from sharing ideas on the board to the spark during lunch. Thank you.

2 Liminary remarks
The goal of this section is not to make a complete list of the statements that will be needed

throughout this thesis. Instead, we simply take some time to explain a couple of prerequisites
results, which hopefully will ease the reader into the following sections. In some sense, this would
be the introduction, if introductions were not as standardized and forced to be full of spoilers as
they are nowadays (the adjective liminary means placed at the beginning). In particular, we omit
every proof.
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2.1 A few words about categories and those that are stable
Let R be a discrete ring. There are a number of categorical gadgets one can associate to R; to

cite a few classical ones: Proj(R), the 1-category of finite-type projective modules, Mod(R)♡,ft,
the 1-category of finite-type modules and Mod(R)♡, the 1-category of R-modules4. These have
increasingly good categorical properties, at the price to have more complicated objects inside of
them.

The 1-category Proj(R) is additive: the product and coproduct coincide and the structure of
commutative monoid this induces on Hom(P,Q) via

+: Hom(P,Q)×Hom(P,Q) ≃ Hom(P,Q⊕Q) Hom(P,Q)∇∗

is actually that of an abelian group. The 1-category Mod(R)♡,ft is also additive and the embedding
Proj(R)→ Mod(R)♡,ft preserves direct sums, but there is more: Mod(R)♡,ft has all finite limits
and colimits and satisfies the axioms of an abelian category. Note that if

0 P Q S 0

is a short-exact sequence of Mod(R)♡,tf where P, S ∈ Proj(R) then Q ∈ Proj(R) and the sequence
splits, so that Q ≃ P ⊕ S non-canonically. In particular, both Proj(R) and Mod♡,tf (R) have
the structure of an exact category, as introduced by Quillen in [Qui73]. Finally, Mod(R)♡ is also
abelian, but also has filtered colimits — in fact, it is generated by Mod♡,tf (R) under them with
minimal hypotheses on R and thus is a locally-presentable 1-category.

We will discuss more lengthily exact categories later in the text. Briefly, Gabriel-Quillen’s
embedding theorem affords us the following perspective on exact categories: an exact category E is
an additive full subcategory of an abelian category A closed under extensions. Those sequences in
E that are short-exact when viewed in A correspond to a choice of a special class of exact sequences
and they necessarily include all the split ones.

There are two extremal possibilities for exact categories: one is to choose all of the abelian
category as a full subcategory and the other to pick something like Proj(R) inside Modtf (R), i.e.
a full subcategory where all the chosen exact sequences split. It is always possible to realize an
additive category A as embedded as a full subcategory of an abelian category where all the special-
exact sequences split.

This was the extent of categorical gadgets associated to a discrete ring R. But there is more:
any ring R can be viewed as a discrete E1-ring spectrum. This is trickier than it seems because
two different phenomenon are happening at once. The central point of (∞, 1)-categories is that
there is a well-wrought theory where (homotopy types of) spaces are the freely generated objects
of the theory, in the place of sets. In this world, commutative monoids in sets become E∞-monoid
in spaces and abelian groups those E∞-monoids in spaces which are grouplike. A result of May
characterizes those as infinite loop spaces, and those can be further seen as connective spectra.

The trick is of course in the adjective: there are some spectra which are not connective. In-
deed, in the category Sp≥0 of connective spectra, the suspension functor Σ is fully-faithful and
presentably making it invertible produces a larger category, Sp, of all spectra — doing it pre-
sentably has even created some interesting although strange objects, like the spectrum KU whose
homotopy groups are periodic. For categorical reasons, Sp is nicer than its full subcategory Sp≥0.
Hence, when choosing what to replace the category of abelian groups Ab, the standard exam-
ple of an abelian category, we are given two choices and one is “better” than the other by that
Grothendieck quote — it has worse objects but better categorical properties.

On the side of categories associated to a ring object R in Sp: the situation is as follows. If
R is a connective ring spectrum, then there is a category Proj(R) which is additive in the higher
sense i.e. where mapping objects are required to upgrade to connective spectra instead of abelian
groups and two categories Perf(R)≥0 and Mod(R)≥0 — where Perf has taken the place of Mod♡,ft

for ontological and historical reasons — which are prestable. In particular, they have all the finite
limits and colimits and they quite nicely behaved. The prototypical example of a prestable category

4Make a choice of your favorite direction for modules (either left or right) and stick to it.
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is Sp≥0 which is precisely the free prestable category on one object, namely the connective ring
spectrum S, i.e. the sphere spectrum.

Of course, our terminology suggests that if R is any ring spectrum, there should also be two
categories Perf(R) and Mod(R) which ought to be simply stable. And there is, as is discussed in
Section 1 of [Lur17a]! Note that Barwick has also developed the higher analogue of exact categories
in [Bar16] and Klemenc has shown the Gabriel-Quillen embedding theorem holds in this context,
see [Kle23], so that we can have the same discussion about exact categories. Note however that we
have lost something in the way: there need not be an additive equivalent of Proj(R) in this more
general setup, unless R is connective. Of course, one can still talk about the smallest additive sub-
category of Perf(R) containing R and closed under retracts but this no longer generates Perf(R)
as an additive subcategory — in fact it may be that some exact sequences in Perf(R) between
objects of this subcategory do not split so the name projective would be undeserved. In fact, by
virtue of a theorem of Sosnilo, Proj(R) generates Perf(R) as a stable subcategory if and only if R
is a connective ring spectra.

Let us summarize what we have discussed. Let CatEx denote the category of stable categories
and exact functor, Exact∞ the category of exact categories and exact functors between them
and Catadd the category of additive categories and additive functors between them. We have two
forgetful functors, the former being fully-faithful

CatEx Exact∞ Catadd

Both functors have left adjoints, denoted respectively Stab and (−)⊕. Moreover, to each ring
spectrum R, we can associate a category Mod(R) of R-modules. This category is presentable
stable and compactly generated by its compact objects Perf(R). In the case where R is con-
nective, then additionally there is an additive full subcategory Proj(R) of Perf(R) such that
Stab(Proj(R)⊕) ≃ Perf(R).

There is an operation on rings we have not yet discussed and that will be of critical importance
for us. If R is a ring and S a subset of R, then one can form p : R → R[S−1], the localization of
R at S. This is characterized by a universal property, namely

Hom(R[S−1], Q) p∗

−→ {f ∈ Hom(R,Q) | ∀, t ∈ f(S), t is invertible}

There is a similar concept for ring spectra, and naturally for stable categories. Let us already
remark that the interplay between those notions is way more complicated than the words similar
concept could lead one to believe.

Let us exclusively focus on stable categories for a moment. The notion of a localization of
stable categories p : C → C[W−1] at a collection of arrows W is well-defined up to set-theoretical
issues, which we eagerly suppress. The following holds — see the appendix of [CDH+23b] for a
more complete discussion (and proofs!):

Proposition 2.1 Let i : C → D be an exact functor between stable categories. Then, its cokernel
in CatEx is given by the localization p : D → D/C at the collection of arrows X → Y whose
kernel is in the image of i.

Arrows exhibiting their target as a cokernel in CatEx are called Verdier projections. Taking the
kernel of a Verdier projection p : D → E yields a full subcategory i : C → D which is further closed
under retracts in D; such arrows are Verdier inclusions. The two classes determine one another,
that is to say that the projection associated to a Verdier inclusion i obtained as the kernel of p is
exactly p. In another, fancier way: these are normal mono/epi-morphisms of CatEx, though we
note that not all of the categorical epimorphisms are of this form. In particular, they give rise to
the notion of a Verdier sequence, which is exactly a null-composite sequence (this is a condition in
CatEx):

C D Ei p

where i, p are associated Verdier inclusions/projections. In particular, Verdier sequences are ex-
actly the fiber-cofiber sequences of CatEx. This structure is quite peculiar, as it seems to combine
both some abelian and stable features and certainly we expect in the future that the correct notion
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of a 2-exact (or 2-stable or 2-abelian) (∞, 2)-category, which is as of yet to be invented, has this
as a prime example.

There are two related classes of sequences that will also interest us: on one hand, the Karoubi
sequences are the related notion in CatEx,Idem, the full subcategory of stable idempotent-complete
categories, which can equally be characterized as the categories of compact objects of compactly-
generated presentable stable categories. Karoubi projections can be characterized as composites
of a Verdier projection followed by a dense inclusion (i.e. C → D such that every object of D is a
retract of an object of C) and Karoubi inclusions are simply fully-faithful functors.

On the other hand, split-Verdier sequences, also known as additive sequences though this is
particularly terrible name since all categories in sight are stable and the functors between them
exact, and the related semi-split Verdier sequences, which are Verdier sequences where the Verdier
projection is further asked to have either a left, a right or both adjoints (the first two corresponding
to semi-split projections and the latest to the split case). The adjoint of a Verdier projection is
automatically a Verdier inclusion, and thus entails the localization L : C → D to be a Bousfield
localization, i.e. to realize D as a subcategory of X ∈ C such that some morphism (either X → L(X)
or L(X)→ X depending on the side of the adjoint) is an equivalence.

Let us note that the category CatEx is far from being itself stable; in fact, a result of a further
section will show that its stabilization vanishes. It is not even additive since FunEx(C,D)≃ is only
a monoid in spaces and not group-like in general. However, it carries some 2-categorical ersatz of
an exact structure (even multiple when considering the different flavors of split, non-split Verdier
and Karoubi sequences) and trying to understand how much information this captures leads to the
next section.

2.2 Algebraic K-theory
Due to both its ubiquitous nature and deep ties with homotopical algebra, which is a topic

which has known multiple revolutions of language, there is a plethora of presentations of algebraic
K-theory. The one we have chosen is probably the most abstract, though not necessarily the most
general. It follows along ideas introduced in [BGT13] but we altered the presentation because we
will not prove anything.

As we have discussed in the previous section, CatEx carries many things which are not too far
from an exact structure. We also discussed how every exact category admits a stable envelope. It is
legitimate to wonder whether such an envelope also still exists, and how it varies from the different
structures. Let us say that a functor F : CatEx → E is an additive invariant (respectively, Verdier-
or Karoubi-localizing) if it sends additive (resp. Verdier, Karoubi) sequences to exact sequences of
E . A very general argument (using say 5.2.6.3 of [Lur08]) shows:

Theorem 2.2 — Blumberg-Gepner-Tabuada. For the three flavors of invariants cited above, there
exists a universal invariant U : CatEx → Motflavour whose target is stable such that for every
stable E :

U∗ : FunEx(Motflavour, E) ≃−−→ Funflavour(CatEx, E)

is an equivalence, where the right-hand side is the category of invariants which are of the wanted
flavor.

So the answer to our question is at least promising: there is a stable category which, for all
intent and purposes, has the correct exact sequences. In upcoming work [RSW25], Ramzi–Sosnilo–
Winges show that for the Karoubi-localizing one, the functor UKar : CatEx →MKar is actually a
localization. In fact, this is also true for the additive one if one is more careful in the formulation:
one has to remark that additive invariant should not be defined as having necessarily a stable
target but an exact one; in this more general case, the target of the universal functor is a split-
exact category whose stabilization is the above Motadd and only this smaller additive category is
a localization. In particular, Motadd carries a weight-structure. The author will probably write
some more precise things regarding this claim at some point in the future.

In CatEx, there is a noteworthy object in the form of Spfin, the category of finite spectra which
is also the free stable category on one object, namely the sphere spectrum S. In fact, CatEx is
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generated under colimits by this object, though not freely so.

Definition 2.3 Let K : CatEx → Sp denote the following functor

C 7−→ mapMotadd
(Uadd(Spfin), Uadd(C))

We call this functor the algebraic K-theory functor. By construction, K is an additive invariant,
and since Motadd has a weight structure whose heart is spanned by the image of Uadd, K lands
in connective spectra.

Naturally, this definition looks remarkably obscure for anyone who is familiar with old-school
K-theory. Part of this thesis is to try and convince the reader that a lot can be achieved through
it so we will stick to it until much later, where we will need a concrete construction, and we will
use the one described in [Bar13, Bar16]. Let us not say just yet what this concrete construction
is, as it is not necessary for most of our exposition.

By construction, mapping spaces in CatEx are just the underlying groupoids of the functor
categories FunEx(C,D). Hence K : CatEx → Sp comes with a universal property with respect to
the functor Σ∞

+ MapCatEx(Spfin, C), i.e. the infinite suspension of the core functor ι, whose proof
is recalled in Theorem 4.9. Namely, the natural transformation Σ∞

+ ι → K is initial among those
with target an additive invariant.

Note that since FunEx(C,−) and C⊗− preserve additive sequences for every stable C, a standard
argument (a variation of which is collected in the proof of Proposition 2.4) shows that

K(FunEx(C,D)) ≃ mapMotadd
(Uadd(C), Uadd(D))

for any C,D. We warn that this holds because we took the non-presentable version of Motadd, i.e.
the one which factors all additive functors regardless of the cardinal for which they might be acces-
sible; in particular, this is why our statement looks more general than the one presented in [BGT13].

It stands to reason that we can define two other variants of K-theory, KV er and K which are
respectively initial as Verdier-localizing invariants and Karoubi-localizing invariants. The latter
is often known as non-connective K-theory and will slip out of the discussion completely, as the
“correct” way of doing trace methods for K certainly lies within the set-up of Efimov in [Efi24]
which is out of the scope of this thesis. The former, KV er, is surprisingly equal to K:

Proposition 2.4 The K-theory functor K : CatEx → Sp is Verdier-localizing. Moreover, there is
an equivalence

K(FunEx(C,D)) ≃ mapMotVer
(UVer(C), UVer(D))

if C is finite-smooth and finite-proper, where UVer : CatEx → MotVer is the universal invariant
of the Verdier-localizing flavor, as in Theorem 2.2.

Proof. The first claim is proven in [Sau23a, Theorem 3.1] or [HLS23, Theorem 6.1] and we refer
to the proof there since this section is supposed to be recollection. Note that since it was already
initial as an additive invariant Against our better judgment, we provide a proof of the second claim
since we could not locate a reference.

We first prove that if C ∈ CatEx is such that C⊗− and FunEx(C,−) preserve Verdier sequences,
then for all D, there is an equivalence:

K(FunEx(C,D)) ≃ mapMotVer
(UVer(C), UVer(D))

The strategy of proof is standard, for instance it features in the proof of Theorem 6.7 in [SW25].
Note that the the right hand side has a universal property as a functor of D, namely

Σ∞
+ mapCatEx(C,−) −→ mapMotVer

(UVer(C), UVer(−))

is the initial natural transformation with the above source and target a Verdier-localizing invariant.
Since FunEx(C,−) preserve Verdier sequences, K(FunEx(C,−)) is Verdier-localizing. But now,

C ⊗ − also preserves Verdier-sequences therefore we have the chain of equivalences

Nat(K(FunEx(C,−)), F ) ≃ Nat(K, F (C⊗−)) ≃ Nat(Σ∞
+ (−)≃, F (C⊗−)) ≃ Nat(Σ∞

+ FunEx(C,−)≃, F )
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for every Verdier-localizing5 F : CatEx → Sp. Thus the computation of mapping spectra in
motives.

To conclude, it remains to explain why, if C is finite-smooth and finite-proper, FunEx(C,−) and
C ⊗− preserve Verdier sequences. This is a consequence of the fact that C is dualizable in CatEx,
a fact whose explanation we defer to the next section.

Here, a stable category is finite-smooth if the spectrally-enriched mapC is in the image of
the Yoneda embedding of Ind(Cop ⊗ C) ≃ FunEx(Cop ⊗ C,Sp), and finite-proper if mapC lands in
Spfin. Note that Spfin is idempotent-complete so finite-proper coincides with the usual notion of
properness of idempotent-complete stable categories if C is idempotent-complete.

The second part is almost proven in [BGT13]; they work with CatEx,Idem instead of CatEx

hence their notion of smoothness and properness are related to compact objects and not finite, and
therefore, their computation holds only in Karoubi-localizing motives.

2.3 Topological Hochschild homology and its variants
Section 5 is dedicated to THH of stable categories with coefficients, and the first subsection acts

as a recollection for the part needed in this section. Still, it will be good to review the more clas-
sical side of the story, with as usual, a very modern perspective on it. This is what we set out to do.

Let PrL
Ex denote the category of presentable stable categories. There is a symmetric monoidal

structure ⊗ on PrL
Ex, often called the Lurie tensor product, which is such that C × D → C ⊗ D

is the initial functor which preserves colimits in both variables. Whenever we have a symmetric
monoidal category, it makes sense to ask what are its dualizable objects.

Definition 2.5 An object X ∈ C is dualizable with respect to ⊗ if there exists a dual object
D(X) ∈ C and maps coev : 1→ X ⊗D(X), ev : X ⊗D(X)→ 1, where 1 is the unit, such that
there exists equivalences (ev⊗X) ◦ (X ⊗ coev) ≃ idX and similarly for D(X).

The dual of a dualizable object is unique up to equivalence, and dualizability can be detected
in the homotopy category. Hence, it is really a property of an object to be dualizable.

Let us quickly investigates dualizable objects of various categories of categories. We will say
that a category C is finite-proper if, for all X,Y ∈ C, the spectrum map(X,Y ) is a finite spectrum,
i.e. in the smallest category Spfin of Sp closed under finite colimits. It is a non-trivial fact that
Spfin is idempotent-complete and therefore finite-proper is equivalent to being simply proper, i.e.
the map(X,Y ) are compact spectra.

We will also say that C is finite-smooth if the functor Spfin → FunEx(Cop⊗C,Sp) corresponding
to the point map : Cop⊗C → Sp factors through Cop⊗C via the Yoneda embedding. This time this is
not equivalent to being proper, which only asks that map is a compact object of FunEx(Cop⊗C,Sp).

Proposition 2.6 Let C be a small stable category. Then, Ind(C) is dualizable in PrL
Ex with dual

Ind(Cop).
In consequence, a category C is dualizable in CatEx if and only if it is (finite-)proper and

finite-smooth; an idempotent-complete C is dualizable in CatEx,Idem if and only if it is proper
and smooth.

Proof. The first claim is explained in the discussion preceding Theorem 3.7 in [BGT13] and said
Theorem proves the claim about dualizable objects of CatEx,Idem. Let us therefore only explain
why dualizable objects of CatEx are the finite-proper and finite-smooth categories. For any stable
C, since Ind : CatEx → PrL

Ex is a monoidal functor, we have two continuous functors

coevInd C : Sp −→ Ind(C ⊗ Cop) evInd C : Ind(C ⊗ Cop)→ Sp

satisfying the wanted triangle identity. Since the dualizability datum is unique, if C is dualizable,
then Ind(coevC) ≃ coevInd C and similarly for the evaluation. From this, it follows that C is finite-
smooth and finite-proper. Reciprocally, those conditions ensure that suitable restrictions factor
through the correct objects, so that the dualizability datum of Ind(C) restricts to one for C.

5Surprisingly, one only need that F (C ⊗ −) is additive in the above proof so we did not use that C ⊗ − preserves
Verdier sequences. We still wrote the proof this way because this template of proof generalizes to other situations
where the universal invariant does not have a stronger universal property.
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Whenever we have a endomorphism of a dualizable object f : X → X, we can take its trace: it
is the endomorphism of the unit obtained by the composition

1 X∨ ⊗X X∨ ⊗X X ⊗X∨
1

coev id ⊗f ≃ ev

In CatEx, traces are exact functors Spfin → Spfin, i.e. objects of Spfin and in PrL
Ex, they are

colimit-preserving functors Sp→ Sp, i.e. objects of Sp.
Definition 2.7 Let C be a stable category and M ∈ EndL(Ind C). Then, topological Hochschild
homology of C with coefficients in M is the spectrum:

THH(C,M) = tr(M)

where the trace is computed in PrL
Ex. Proposition 4.24 of [HSS17] guarantees that this expression

coincides with the more usual cyclic Bar construction with many objects of [BGT13, Section
10.1].

Remark 2.8 If C is finite-smooth and finite-proper and M actually comes from an exact functor
C → C, then we could also take the trace in CatEx. This would result in a finite spectrum
which coincides with THH(C,M), given the discussion above Definition 2.7.

Warning 2.9 In §5, we will introduce an a priori different definition of THH, namely in Definition
5.7. We will prove thereafter that this definition coincides, the exact deduction being recorded
in Remark 5.29.

As a trace, THH enjoys the functoriality of traces, a somewhat mysterious thing which has been
studied by Ponto–Shulman [PS13], Kaledin and Nikolaus [Kal15, Nik18], Ramzi in close relations
to trace methods [Ram24a], and which is the main topic of [HNS25]. In essence, it stems from the
classical fact that tr(AB) = tr(BA) for matrices A,B, but in our categorified world, this = sign
must become a homotopy and it requires some work to set-up the fact that higher cyclic relations
yield compatible homotopies. In any case, there is a resulting endowment of THH(C,M⊗n) with
a action of Cn, the cyclic group with n elements.

Here, M⊗n is most simply understood as M composed with itself n-times when thinking of
bimodules as continuous functors Ind(C) → Ind(C). In particular, note that this structure is
monoidal but not symmetric, so that this action is not for free.

In fact, THH has more structure: there are functorial, Cn-equivariant maps

ϕn,p : THH(C,M⊗n) THH(C,M⊗np)tCp

which form the polygonic structure on THH, as in [KMN23]. Here we are getting a little bit ahead
of ourselves, since proving those facts in this generality is part of related works, namely [HNS25].
In particular, there is a more refined version of the above where the target is now the proper Tate
construction, called the genuine polygonic structure which we will save for later.

Nonetheless, an offshoot of the polygonic structure has been well-known and studied for years:
it is the famed cyclotomic structure on THH(C, id), which we will abbreviate THH(C). What
happens is as follows: since M = id, THH(C) has a wealth of Cn-actions, one for each n, which
are all compatible under divisibility: the crux of the story is that they actually all come from a
S1-action. Furthermore, the maps

ϕp : THH(C) THH(C)tCp

also are S1-equivariant. Cyclotomic spectra form a category CycSp, introduced in their modern
version by Nikolaus-Scholze [NS17] (though this is not always the same as the old-school cyclotomic
spectra, as will become painfully relevant in later sections), as the following pullback of presentable
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stable categories:
CycSp

∏
p

Ar(SpBS
1
)

SpBS
1 ∏

p

(SpBS
1
×SpBS

1
)

(s,t)

(id,(−)tCp )

There is a colimit-preserving functor Sp → CycSp endowing a spectrum X with the trivial S1-
action and structure maps X → XhCp → XtCp . The right adjoint of this functor is denoted
TC : CycSp → Sp, and precomposing it by THH, we get topological cyclic homology, TC(C), a
particularly arduous but computable invariant landing in spectra.

The functor THH : CatEx → CycSp is Karoubi-localizing. In particular, there is a map
K → THH called the Dennis trace map which is induced by the choice of 1 in Z ≃ π0 THH(S) ≃
π0 Nat(K,THH). This upgrades to a map of cyclotomic spectra when giving K the trivial cyclo-
tomic structure, hence refines to the cyclotomic trace, a natural transformation K → TC. Note
that TC : CatEx → Sp is also localizing, so this cyclotomic trace also corresponds to a point in
π0 TC(S), this latter group is again Z and we are again taking the map corresponding to 1.

We can now broadly state our goal: we want to investigate the maps

K TC THH

and more precisely, figure out whether the knowledge of one of the sides can provide information
on the other two.

3 The tangent bundle of CatEx

This section and the two that follow have diverged from an early draft of [HNS24]. In particular,
the results there are to be considered joined with Yonatan Harpaz and Thomas Nikolaus, and only
the mistakes are of the sole responsibility of the author.

Let us begin by briefly recalling some facts about tangent categories and the tangent bundle of
a nice-enough category, which are discussed at length in section 7.3 of [Lur17a]. Let C be a category
with finite limits and denote Sfin

* the category of finite pointed spaces, the smallest subcategory of
S∗ containing ∗ and stable under finite colimits. There is a cocartesian fibration

π : Exc(Sfin
* , C) C

given by the evaluation at the point, where the left-hand-side category is the category of ex-
cisive functors Sfin

* → C. The fiber of π over some X ∈ C is equivalently given by the category
Exc∗(Sfin

* , CX//X) of pointed excisive functors, which is a model for both the stabilization Sp(CX//X)
of the over-undercategory of X and the stabilization of Sp(C/X).

Following the philosophy of Goodwillie calculus, we think of stable category as the curve-less (we
would say flat if not for the usual meaning of the word related to tensor products), linear objects of
the higher categorical world and in accordance with that philosophy, we denote TXC := Sp(CX//X)
the tangent category of C at X. Furthering the analogy with manifolds, the construction we have
described is akin to bundling together the tangent categories for varying X hence we call it the the
tangent bundle of C and denote it TC := Exc(Sfin

* , C). Evaluation along the map S0 → ∗ provides
a functor sqz, the square-zero extension functor, given by:

sqz : TC −→ Fun(∆1, C)
(X,M) 7−→ (Ω∞

/XM → X)

which characterizes the tangent bundle as the stable envelope (in the sense of [Lur17a, Section
7.3.1]) of the target projection t : Fun(∆1, C)→ C. A classical but seminal example is the tangent
bundle of CAlg(Sp): [Lur17a, Theorem 7.3.4.14] asserts that it has objects pairs (R,M) with
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R ∈ CAlg(Sp) and M a R-bimodule, and sqz is the square-zero extension of ring spectra in the
usual sense.

Our goal is to study the tangent bundle of CatEx, the category of stable categories and exact
functors between them. Up to Morita equivalences, CAlg(Sp) embeds in CatEx, and the driving
idea of our study is that the tangent bundle of CatEx shares a similar description to the tangent
bundle of CAlg(Sp) that we have just recalled.

3.1 Bimodules on a stable category, laced categories
Throughout this manuscript, we will call objects of TCCatEx C-bimodules, and often write

Bimod(C) instead of the former. We issue first and foremost the following warning:

Warning 3.1 A C-bimodule is not a bimodule for a commutative algebra object in CatEx,
equipped with its usual tensor product. In fact, the category of such bimodules objects is
not even stable.

Having cleared this first hurdle, note that the objects of the category TCatEx can be described
as pairs (C,M) where C is stable and M ∈ Bimod(C). Since this category will be central in all of
this paper and to avoid the cumbersome "stable category equipped with a bimodule M over itself",
we have opted to give a name to such pairs:

Definition 3.2 A laced category (C,M) is the datum of a stable category and a bimodule M ∈
Bimod(C). The category of laced categories TCatEx is the tangent bundle of CatEx and its
square-zero extension functor is denoted Lace : TCatEx → CatEx.

Our first goal is to get a concrete, tractable expression for Bimod(C). For this, we shall mostly
combine existing results of the literature. By [BGT13, Theorem 1.10], the 1-category CatSp of
spectrally enriched categories can be equipped with a model structure such that the localization
at its weak equivalences, which we will denote the same way, admits CatEx as a full subcategory
closed under limits (in fact a left Bousfield localization). In particular, for every stable C, this
induces a functor

TCCatEx TCCatSp

which again identifies its source as a full subcategory closed under limits of its target. Our second
ingredient is [HNP19]: indeed Sp can be realized as the category underlying a stable, symmetric
monoidal model category which is differentiable and such that the unit S is compact in the homo-
topic sense. Hence, it satisfies the hypotheses of [HNP19, Corollary 3.1.17] which gives a natural
identification:

TCCatSp ≃ FunSp(Cop ⊗ C,Sp)

for any spectrally enriched C. In particular, when C is stable, the right hand side is exactly the
category FunEx(Cop ⊗ C,Sp).

Proposition 3.3 Let C be a stable category. The functor

Bimod(C) ≃ TCCatEx TCCatSp ≃ FunEx(Cop ⊗ C,Sp)

is an equivalence.

Proof. It suffices to show that for any spectrally enriched C → D where C is stable, Ω/CD is
stable. Assuming this, we deduce a commutative diagram:

... (CatSp)/C (CatSp)/C (CatSp)/C

... (CatEx)/C (CatEx)/C

Ω/C Ω/C

Ω/C Ω/C

This shows that the horizontal towers are equivalent as Pro-objects, in particular the limit of the
lower tower is equivalent to the limit of the higher one, but the former is TCCatSp while the latter
is TCCatEx.

27



We prove a slightly more general fact than is needed to get the above. Let A,B be stable and
C spectrally enriched with two maps A → C and B → C which preserve finite limits and colimits;
we show that the fiber product P := A×C B is stable. This will in particular apply when A ≃ B
is stable and D is any spectrally enriched category under this common value.

For this, it suffices to see that the loop functor of P is invertible; by the explicit expression of
the mapping spectra of P, we see that ΩP has a left adjoint given by ΣP . Since P → A × B is
spectrally-enriched, it will map the unit and the counit to their respective analogues in A×B, but
this is a stable category so these maps are equivalences and P → A × B is conservative. Hence,
A×C B is also stable, which concludes.

The association C 7→ FunEx(Cop⊗C,Sp) admits both a contravariant and a covariant functorial
upgrade, by either precomposing or left Kan extending along fop× f , when f : C → D exact. This
yields a bicartesian fibration to CatEx, whose source is none other than TCatEx.

Corollary 3.4 The bicartesian fibration TCatEx → CatEx classifies the functor

C 7−→ FunEx(Cop ⊗ C,Sp)

with covariant transition arrows given by left Kan extension and contravariant transition arrows
given by precomposition along (fop × f) for f : C → D exact.

This identification provides more than just a good handle on objects: it follows that a laced
functor, i.e. a map (C,M) → (D, N) between laced categories is the datum of an exact functor
f : C → D as well as either a natural transformation η : M → N ◦ (fop × f) or equivalently,
(fop × f)!M → N . The following functorial description will also be useful:

Lemma 3.5 Let (C,M) and (D, N) be two laced categories, we have a cartesian square of spaces:

MapTCatEx((C,M), (D, N)) ιFunEx(Dop ⊗ C,Sp)∆1

ιFunEx(C,D) ιFunEx(Dop ⊗ C,Sp)2

(s,t)

where the bottom vertical map sends f to the couple ((fop ⊗ id)!M,N ◦ (id⊗f)).

Proof. Both vertical maps are Kan fibrations, the former by [Lur08, 2.4.4.1], so it suffices to
check that the fibers over any point are equivalent, which follows from [Lur08, 2.4.4.2].

Remark 3.6 We have an equivalence FunEx(Cop ⊗ C,Sp) ≃ FunEx(C,FunEx(Cop,Sp)), and the
category of exact presheaves FunEx(Cop,Sp) can be identified with Ind(C), the Ind-completion
of C. Using its universal property, we get an equivalence:

FunEx(Cop ⊗ C,Sp) ≃ EndL(Ind(C))

In particular, we see that the category Bimod(C) is invariant under passing to the idempotent
completion.

Denote j : C → Ind(C) the Yoneda embedding. If F : Ind(C)→ Ind(C) is a colimit-preserving
functor, its image under the above equivalence is BF : Cop ⊗ C → Sp, given on objects by:

BF (X,Y ) := mapInd(C)(j(X), F (j(Y )))

In the following, we will often omit to write the Yoneda embedding. In particular, with this
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change of point of view, the above square becomes

MapTCatEx((C,M), (D, N)) ιFunEx(C, Ind(D))∆1

ιFunEx(C,D) ιFunEx(C, Ind(D))2

(s,t)

where the maps sends an exact f : C → D to the pair (Ind(f) ◦M,N ◦ f).

Remark 3.7 Since the core ι is a limit-preserving functor, removing the ι in the previous pullback
defines a natural enrichment of TCatEx in Cat, which we will denote FunTCatEx . Concisely,

FunTCatEx((C,M), (D, N)) := LaxEq
(

FunEx(C,D) FunEx(C, IndD)
Ind(−)◦M

N◦(−)

)

where LaxEq denotes the lax-equalizer construction of [NS17, Definition II.1.4].

■ Example 3.8 Let R be a ring spectrum, and denote Perf(R) the category of perfect modules, i.e.
compact objects of ModR (our convention will be to consider right-modules in the following). Any
non-necessarily perfect R-bimodule M determines a bimodule FM on Perf(R):

FM : N ∈ Perf(R) 7→ N ⊗RM ∈ ModR

The association M 7→ FM upgrades to a fully-faithful functor BimodR → FunEx(Perf(R),ModR).
Remark that an exact functor Perf(R)→ ModR is fully determined by its value at R and FM (R) ≃
M , which acquires the structure of R-bimodule via the identification EndPerf(R)(R) ≃ Rop, hence
the above construction is in fact an equivalence of categories. ■

As we remarked in 3.7, the enriched mapping categories of TCatEx are lax-equalizers. When
plugging as the source (Spfin, id) where id : Sp → Sp is viewed as a colimit-preserving endomor-
phism of Ind(Spfin), we get the following object, which will be central in this paper:

Definition 3.9 Let M : C → Ind(C) be an exact functor. The category of laces in (C,M), denoted
Lace(C,M) is the lax-equalizer from the Yoneda embedding of C to M , i.e. the following
pullback:

Lace(C,M) Ind(C)∆1

C Ind(C)× Ind(C)(j,M)

This is in particular a stable category by [NS17, II.1.5].

Equivalently, in the bimodule point of view, objects of Lace(C,M), are described by the data
of a point X ∈ C as well as a map S→M(X,X), or equivalently a point in Ω∞M(X,X), since by
Remark 3.6, map(−, F (−)) is the bimodule associated to F : C → Ind(C).

However, note that the arrows between laces in (C,M) and more generally, the whole cate-
gory Lace(C,M) is harder to describe: since M(X,X) is not functorial in X we cannot write a
similar lax-equalizer between the constant S and the diagonal M(X,X). Instead, one can realize
Lace(C,M) as the pullback along the diagonal of C of the bifibration U → C × C classifying the
functor Ω∞M : Cop × C → S.
■ Example 3.10 Let R be a ring spectrum and M a bimodule, and denote FM the associated
Perf(R)-bimodule (see Remark 3.8). Then, Lace(Perf(R), FM ) is the category of compact modules
N equipped with a natural transformation N → N ⊗R M , which is often called the category of
M -parametrized endomorphisms.

Suppose further that R,M are connective. Then, Lace(Perf(R), FΣM ) is generated by a single
object, namely the pair (R, 0 : R → ΣM). Indeed, the connectivity assumption on M implies
that all the objects where N ∈ Proj(R) are of the form (N, 0 : N → ΣM ⊗R N) hence the full
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subcategory Lace(Proj(R), FΣM ) obtained by pulling back along Proj(R) → Perf(R) is generated
by a single object, namely S the endomorphism ring spectrum of 0 : R→ ΣM .

Consequently, combining Theorem 2.9 and Lemma 3.106 of [Sau23b] implies Lace(Perf(R), FΣM )
is equivalent to Stab(Proj(S)) and S is connective: this is none other than Perf(S). Computing
explicitly this endomorphism ring spectrum via the equalizer formula, we get

S ≃ Eq
(

mapPerf(R)(R,R) mapPerf(R)(R,ΣM)
00

)
In particular, the underlying spectrum of S is equivalent to R ⊕M . Moreover, under this equiv-
alence, the ring structure identifies it with the square-zero extension R ⊕M , hence we recover
already at the level of categories the result of Dundas-McCarthy in [DM94], comparing K(R⊕M)
and K(Lace(Perf(R), FΣM )). ■

By construction, we have an equivalence
FunTCatEx((Spfin, id), (C,M)) ≃ Lace(C,M)

In particular, we see that Lace is a functor TCatEx → CatEx. Moreover, it has a left adjoint given
as follows:

Proposition 3.11 The functor Lace : TCatEx → CatEx is right adjoint to the functor L given
on objects by C 7→ (C, idInd C).

Proof. Let C be a stable category and (D, N) a laced category. By Lemma 3.5 and the subsequent
remark, MapTCatEx((C, idInd C), (D, N)) is the following pullback square:

MapTCatEx((C, idInd C), (D, N)) ιFunEx(C, Ind(D))∆1

ιFunEx(C,D) ιFunEx(C, Ind(D))2

(s,t)

where the bottom vertical map sends f to the couple (Ind(f)◦jC , G◦f)) and jC denotes the Yoneda
embedding of C. Since Ind(f) ◦ jC ≃ jD ◦ f , this is the square of Definition 3.9 to which we applied
the limit-preserving ιFunEx(C,−), which is the mapping space in CatEx. In particular, we deduce
from this a natural equivalence

MapTCatEx((C, id), (D, N)) ≃ MapCatEx(C,Lace(D, N))
which gives the wanted adjunction.

By [HNP19, Corollary 1.0.2], the functor C 7→ (C, idInd C), which we can equivalently describe
as C 7→ (C,mapC), is the cotangent complex of CatEx, up to a suspension which we can absorb in
the abstract equivalence TCCatEx ≃ FunEx(Cop ⊗ C,Sp). Consequently, we have the following:

Proposition 3.12 The functor Lace : TCatEx → CatEx coincides with the square-zero extension
of TCatEx. In particular, on each fiber, postcomposition by the restriction Lace(C,−) induces
an equivalence, natural in stable D:

Lace(C,−)∗ : FunEx(D,TCCatEx) FunREx(D, (CatEx)C//C)≃

Moreover, Lace(C,−) : TCCatEx → (CatEx)/C has a left adjoint given pointwise by (f : D →
C) 7→ (C, (fop × f)! mapD).

Proof. All of the proposition follows immediately from the identification of [HNP19, Corollary
1.0.2] of the cotangent complex of CatSp and Proposition 3.11, save for the description of the left
adjoint of Lace(C,−). Since TCatEx → CatEx is a bicartesian fibration, this left adjoint is given
pointwise at f : D → C by the target of the cocartesian arrow over f with source (D,mapD).
The explicit description of Proposition 3.11 implies that the cocartesian transfer maps over some
f : D → C is given by left Kan extension along fop × f , which concludes.

We conclude this section, by the following fact, lifted verbatim from [Sau23b, Lemma 3.7]:
6These results are also presented almost verbatim in §10, see respectively Theorem 10.10 and Lemma 10.21.
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Lemma 3.13 — Lemma 3.7 of [Sau23b]. Let M be a C-bimodule. The canonical functor

ιLace(C,M)→ ι C

is the unstraightening of the functor ι C → S sending X to Map(X,M(X)), where ι denotes the
core of a category.

Proof. Consider P the category given by the pullback

P TwAr(Ind C)

Cop × C Ind(C)op × Ind C(jop,M)

For a general category D, TwAr(D) → Dop × D classifies MapD(−,−), hence it follows that
P → Cop × C classifies the functor (X,Y ) 7→ Map(X,M(Y )). Then, the lemma follows from the
following pullback square:

ιLace(C,M) P

ι C Cop × C∆

where ∆ : ι C → Cop×C is the diagonal X 7→ (X,X), using the canonical identification ι C ≃ ι(Cop).
By pasting, the above square is cartesian as soon as the following square also is:

ιLace(C,M) TwAr(Ind C)

ι C Ind(C)op × Ind C

By the explicit description of pullbacks in CatEx, we can replace the right vertical map by
ιTwAr(Ind C) → ι Ind(C)op × ι Ind C. Now, the claim follows from the fact that ι preserves pull-
backs, that ι Ind(C)op ≃ ι Ind(C) and ιTwAr(Ind C) ≃ ιAr(Ind C).

3.2 Global limits and colimits in the tangent bundle
The functor TCatEx → CatEx is a bicartesian fibration with backwards transition maps given

by restriction and forward transition maps given by left Kan extensions. This is a similar setting to
[CDH+23b, Section 1.1.4] and by the same methods, we will be able to show that TCatEx admits
all limits and colimits, and explain how they are computed.

Note that there are two kinds of colimits of interest in TCatEx: those internal to TCatEx,
and the "fiberwise colimits", by which we mean the colimits computed in some stable subcategory
TCCatEx, i.e. colimits only in the bimodule entry. The latter will play a critical role in further
sections but for now, we focus on the first.

Recall that CatEx admits all limits and colimits by [CDH+23a, 6.1.1], hence combining 4.3.1.11
and 4.3.1.5.(2) in [Lur08], we get:

Proposition 3.14 The category TCatEx has all small limits and colimits and the canonical func-
tor TCatEx → CatEx preserves both.

The above indicates the strategy to compute a colimit in TCatEx. First, compute the colimit
of the underlying diagram of stable category, and denote Ĉ the result; then left Kan extend7 every
bimodule so that they become bimodules over Ĉ. This yields a diagram in TĈCatEx whose colimit
M̂ yields a laced category (Ĉ, M̂) which is the wanted colimit.

We deduce from this a recognition principle for fiber and cofiber sequences of TCatEx. First,
let us introduce the following terminology:

7To compute a limit, the process is the same but one would have to restrict instead of left Kan extending.
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Definition 3.15 A map (f, η) : (C, F ) → (D, G) is called left-strict if η : F → (f ⊗ fop)∗G is an
equivalence, i.e. the restriction of G : Dop ⊗ D → Sp along f ⊗ fop is F , and right-strict if
η : F → (f ⊗ fop)∗G realizesa the left Kan extension of F along f ⊗ fop.

aBy this, we mean that the η is the natural transformation F → (f ⊗ fop)∗((f ⊗ fop)!F ) given as part of
the data of the left Kan extension (f ⊗ fop)!F .

We remark that left-strict maps are exactly the cartesian transition arrows for the bicartesian
fibration fgt : TCatEx → CatEx and right-strict the cocartesian transitions arrows.

Proposition 3.16 Let e : (C, F ) (D, G) (E , H)(i,α) (p,β) be a sequence with nullcomposite.
Denote est the underlying sequence of stable categories. Then,

• e is a fiber sequence in TCatEx if and only if est is a fiber sequence and (i, α) is left-strict.

• e is a cofiber sequence in TCatEx if and only if est is a cofiber sequence and (p, β) is
right-strict.

Proof. This is an application of [Lur17a, 7.3.1.12].

Remark 3.17 Definition 3.15 used the description of bimodules as exact functors C ⊗ Cop → Sp,
but it is also convenient to have a description for colimit preserving endofunctors of Ind(C),
then, (f, η) : (C, F )→ (D, G) is left strict if the following diagram commutes:

Ind(C) Ind(D)

Ind(C) Ind(D)

Ind(f)

F G

Ind(f)r

The reversal for the arrow Ind(f)r is owed to the fact that Ind(f) is obtained as left Kan
extension (fop)! when seeing Ind(C) = FunEx(Cop,Sp), whose right adjoint is composition by
fop, and this is what we are interested ina. Conversely, (f, η) : (C, F )→ (D, G) is right-strict if
the following diagram commutes:

Ind(C) Ind(D)

Ind(C) Ind(D)

F G

Ind(f)r

Ind(f)

Remark that either condition is neither that the natural transformation of squares we are usually
writing for endofunctors of Ind(C) is an equivalence, nor that its Beck-Chevalley (push-pull)
associated transformation is an equivalence. When the underlying sequence of stable categories
is Karoubi, then the respective left-strict and right-strict condition are implied by the stronger
counterparts stated above, but for symmetry reasons, this has no chance of holding in general.

aWe find this is easiest understood when writing F (X, Y ) = G(f(X), f(Y )) and then trying to figure what
G(−, f(Y )) should equal. One needs that F (−, Y ) is the precomposition by (fop)∗ of G(−, f(Y )), hence the
commutative square.

Let us conclude this section by showing that TCatEx is in fact presentable and generated under
colimits by rather few objects.

Theorem 3.18 The category TCatEx is presentable, and in fact is generated under colimits by
only two objects: (Spfin, 0) and (Spfin, id), which are further compact.

Proof. It is clear that (Spfin, 0) is compact since Spfin is compact in CatEx and fgt : TCatEx →
CatEx, which corepresents it, is colimit-preserving. We also claim that ιLace commutes with
filtered colimits so that (Spfin, id) is also compact. Indeed, recall from Lemma 3.13 that there is a
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pullback square of categories

Lace(C,M)
∫X∈C
Y ∈C Ω∞M(X,Y )

C C × C∆

Since pullbacks of categories commute with filtered colimits, it suffices to show the span commutes
with filtered colimits. For the bottom map, this is another instance of the previous phenomenon,
since products are pullbacks over ∗. For the vertical map, we note that it is equivalent to prove
that the functor

Ω∞M : Cop × C −→ S
classified by the vertical map is stable under filtered colimits of TCatEx. But there is a commutative
diagram

TCatEx ∫ A∈Cat Fun(Aop ×A,S)

CatEx Cat

where the bottom map CatEx → Cat preserves filtered colimits. Note that the functor on fibers
which postcomposes by the finitary Ω∞ and precomposes by ι C × ι C → C ⊗ C, is filtered-colimit
preserving; further, the top map is a map of cocartesian fibrations (i.e. preserves cocartesian lifts)
so that, the resulting functor on total spaces

TCatEx →
∫ A∈Cat

Fun(Aop ×A,S)

also preserves filtered colimits, which is what we wanted.

We recall that a cocomplete category C is generated under colimits by Xi if Map(Xi,−) : C → S
jointly detect equivalences by [Yan21, Corollary 2.5] and the following remark (this also features
in section 2 of [CDH+23d]) and if the Xi form a set, then the category is presentable.

It is a folklore result that CatEx is compactly generated by Spfin. This can be found in [KNP24],
and Efimov attributes it to Lurie in the following Lecture. We only record the central argument:
fix f : C → D an exact functor which induces an equivalence on cores. Then f is in particular
essentially surjective. If α, β : X → Y are equalized by f , then their equalizer vanishes in D i.e.
receives an equivalence from 0 which we can lift back to C; since f is an equivalence on spaces
of equivalences, the equalizer must vanish before taking f thus α ≃ β. Now remark that every
nilpotent arrow γ : f(X)→ f(X) is in the image of f : indeed, id−γ is an equivalence with inverse
the sum of powers of γ so lifts back to some map δ and id−δ must map to γ under f . Now the
conclusion follows from writing every map γ : f(X)→ f(Y ) as:

f(X) f(X)⊕ f(Y ) f(X)⊕ f(Y ) f(Y )iX

(
0 γ

0 0

)
pY

Indeed, the middle map is nilpotent and the two extremal maps must be in the image of f since f
is additive. Upgrading those arguments to more homotopical considerations yields the fact that f
is fully-faithful.

By Lemma 3.5, the fiber at X of

FunTCatEx((Spfin, id), (C,M)) ≃ Lace(C,M) C ≃ FunTCatEx((Spfin, 0), (C,M))

is precisely the space of maps X → M(X). Therefore, given a map (f, η) : (C,M)→ (D, N) such
that Lace(f, η) and f induce equivalences of cores, then both f and Lace(f, η) are equivalences of
stable categories by the above argument and this implies that η : M → N ◦ (fop × f) induces an
equivalence on the diagonal. Since M(X,Y ) is always a retract of M(X ⊕ Y,X ⊕ Y ), this implies
that η is always an equivalence, which concludes.
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3.3 The symmetric monoidal structure of the tangent bundle
The previous section began by recalling the symmetric monoidal structure on CatEx. We now

want to promote this structure to TCatEx, in a way that makes the forgetful functor TCatEx →
CatEx monoidal. This follows from the formula

TCatEx ≃ Exc(Sfin
* ,CatEx)

using Day convolution. Let us also write something more explicit:
Definition 3.19 Let F : Cop ⊗ C → Sp and G : Dop ⊗ D → Sp be two bimodules. Then the
biexact

(Cop ⊗ C)× (Dop ⊗D) Sp×Sp SpF×G ∧

refines canonically to an exact functor (Cop⊗C)⊗ (Dop⊗D)→ Sp, i.e. a C⊗D-bimodule which
we denote F ⊠G.

Proposition 3.20 The association ((C, F ), (D, G)) 7→ (C⊗D, F ⊠G) refines canonically to a func-
tor which we denote ⊗ : TCatEx × TCatEx → TCatEx. It endows TCatEx with a symmetric
monoidal structure such that fgt : TCatEx → CatEx is symmetric monoidal.

Moreover, the unit of the above described symmetric monoidal structure (TCatEx,⊗) is
given by (Spfin, id), which is the category of finite spectra Spfin equipped with idSp as a bimodule.

Proof. Using the identification TCatEx ≃ Exc(Sfin
* ,CatEx), the forgetful functor fgt is given by

restriction along ∗ → Sfin
* given by the point. We can then simply apply the results of [Lur17a,

Section 2.2.6] (in fact, we only need what Glasman does in [Gla16]).

Note that there is a canonical identification mapC⊗D ≃ mapC ⊗mapD, therefore:

Corollary 3.21 The cotangent complex L : C 7→ (C, id) admits a canonical enhancement as a
monoidal functor. Therefore its right adjoint Lace is canonically endowed with a lax monoidal
structure functor.

By Remark 3.7, the unit (Spfin, idSp) of TCatEx corepresents the functor Lace≃ := ιLace
where ι denotes the core-groupoid functor CatEx → S. We can thus extract from results of
[Nik16] another universal property for Lace≃:

Lemma 3.22 The functor Lace≃ refines to a lax-monoidal functor and this refinement is in fact
the initial lax-monoidal functor TCatEx → S. This refinement makes Σ∞

+ Lace≃ into the initial
lax-monoidal functor TCatEx → Sp.

Proof. By Proposition 3.20, TCatEx is symmetric monoidal with unit (Spfin, idSp), hence the
first part follows from [Nik16, Corollary 6.8]. The second part follows as does point (4) of Corollary
6.9 of loc. cit.: post-composition by Σ∞

+ is monoidal, hence induces a functor

Funlax(TCatEx,S) Funlax(TCatEx,Sp)

which preserves colimits hence initial objects.

Remark 3.23 A priori, we also have at our disposal another type of tensor product: since an
exact F : Cop⊗D → Sp is a (C,D)-bimodule, for any exact G : Dop⊗E → Sp, there is a functor
F ⊗D G : Cop ⊗ E → Sp which is given by the tensor product of bimodules (as in section 4.4 of
[Lur17a]).

When C = D = E , both tensors are well-defined but are clearly different, as what we
just described gives a C-bimodule whereas the construction of Definition 3.20 yields a (C ⊗ C)-
bimodule.

We have obtained a symmetric monoidal structure on TCatEx whose unit is (Spfin, id). Note
that the tensor product we have produced commutes with colimits in both variables; Theorem
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3.18 thus implies the symmetric monoidal structure is closed. In fact, we will further show it
is both tensored and cotensored over the category of categories C equipped with a given map
F : Cop × C → S. First, let us give a more explicit description of the internal mapping objects:

Definition 3.24 Fix (C, F ), (D, G) two laced categories and let f, g : C → D be two exact functors.
We define the spectrum of (F,G)-linear natural transformations from f to g by the formula:

NatFG(f, g) := Nat(F, (fop ⊗ g)∗G)

where the right hand side object is the spectrum given by the enrichment in Sp of the stable
category FunEx(Cop⊗C,Sp). This is exact in both f and g, covariant in g and contravariant in f ,
hence defines a bimodule NatFG on FunEx(C,D). We denote Fun((C, F ), (D, G)) the associated
laced category.

Remark 3.25 Remark that a map (f, α) : (C, F ) → (D, G) in TCatEx is given by an exact
functor f : C → D, i.e. an object of FunEx(C,D) and then an object of NatFG(f, f) (or rather of
its associated infinite loop space), hence is encapsulated in the data of Fun((C, F ), (D, G)).

The category CatEx is closed and thus there is an exact, natural evaluation functor ev :
C ⊗ FunEx(C,D) → D. In the presence of bimodules F,G, we claim this refines to a map of
TCatEx, whose underlying exact functor is the evaluation functor:

(ev, ηev) : (C, F )⊗ Fun((C, F ), (D, G)) (D, G)

To provide ηev : F ⊠ NatFG =⇒ (evop × ev)∗G, first consider the evaluation

êv : F ∧Nat(F,−) =⇒ id

of FunEx(Cop ⊗ C,Sp) where ∧ denotes the smash product of Sp, applied pointwise at the target.
We claim that precomposition by (evop × ev)∗G refines to the correct transformation. Indeed,

this is a game of currying: (evop × ev)∗G is equivalently a functor

G((−), (−)) : FunEx(C,D)op × FunEx(C,D) FunEx(Dop ⊗D,Sp)

where the precomposition of êv makes sense. Then, currying back induces a natural transformation
F ⊠ NatFG =⇒ (evop × ev)∗G by construction of ⊠.

Proposition 3.26 Let (C, F ) ∈ TCatEx. The functor (C, F ) ⊗ − : TCatEx → TCatEx is left
adjoint to Fun((C, F ),−), with counit given by the aforementioned (ev, ηev).

Proof. On the underlying stable categories, since FunEx(C,−) is indeed right adjoint to C ⊗ −
in CatEx via the evaluation, the counit map induces an equivalence. Consequently, since fgt :
TCatEx → CatEx is a bicartesian fibration, we have a commutative square whose vertical legs are
right fibrations:

MapTCatEx((C, F ),Fun((D, G), (E , H))) MapTCatEx((C, F )⊗ (D, G), (E , H))

ιFunEx(C,FunEx(D, E)) ιFunEx(C ⊗ D, E)≃

Hence, it remains to show that the fibers of the vertical arrows are equivalent. Fixing ϕ : C →
FunEx(D, E), or equivalently ϕ : C ⊗ D → E and using the description of the fibers provided by
Lemma 3.5, it suffices to see that the map induced by ηev is an equivalence:

Nat(F, (ϕop × ϕ)∗ NatGH) Nat(F ⊠G, (ϕop × ϕ)∗H)≃

The evaluation êv of TCCatEx is the counit of the adjunction between F ∧− and Nat(F,−). Hence,
we have equivalences natural in X ∈ Sp and F̂ ∈ FunEx(Cop ⊗ C,Sp)

Nat(F ∧X, F̂ ) ≃ Map(X,Nat(F, F̂ ))
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Precomposing by (evop× ev)∗G the X-variable and (ϕop×ϕ)∗H the F̂ -variable, we get the wanted
equivalence up to some currying on one side, and since this is how we have built ηev, this is indeed
the wanted map.

Remark 3.27 Since (Spfin, idSp) is the unit of the tensor product of TCatEx, we get a natural
equivalence

Fun((Spfin, idSp), (C, F )) ≃ (C, F )

Moreover, we see that

Lace Fun((C, F ), (D, F )) ≃ FunTCatEx((C, F ), (D, F ))

since (Spfin, idSp) corepresents Lace in CatEx. This relates this enrichment with the one de-
scribed in Remark 3.7.

Remark 3.28 Proposition 3.11 of [Nik16] also gives a apriori formula for the internal mapping
object of TCatEx. In particular, the above Proposition can be deduced from the computation
of ends in TCatEx: as any limit in a cartesian unstraightening, one first compute the end of
the underlying object in CatEx which must be the usual enrichment of CatEx over itself given
by FunEx(−,−) and then pulling along each cartesian transition functor, one computes the
resulting end in the fiber, and this time we find the end in the category of functors FunEx(Cop⊗
C,Sp) of the pulled functors, which we have called NatFG in Definition 3.24.

3.4 Tensors and cotensors in the tangent bundle
If I is any category, then there is a functor I 7→ Bimodun(I) := Fun(Iop×I,S) with a covariant

functoriality given by left Kan extension and contravariant functoriality given by restriction. When
I is stable, there is a natural transformation Bimodun(I) → Bimod(I) to the above category by
forgetting the exactness of the functor and postcomposing by Ω∞ : Sp→ S.

In consequence, there is a bicartesian fibration Catb → Cat classifying the above functor and
it induces a functor U : TCatEx → Catb which preserves both cartesian and cocartesian lifts
over the inclusion CatEx → Cat. Remark that Catb is enriched8 in Cat, hence we can make the
following two definitions:

Definition 3.29 Let (I, F ) ∈ Catb and (C,M) ∈ TCatEx, we denote (C,M)(I,F ) the cotensor of
(C,M) and (I, F ), characterized by the following universal property:

FunTCatEx((D, N), (C,M)(I,F )) ≃ FunCatb((I, F ),Fun((D, N), (C,M)))

Dually, we denote (C,M)(I,F ) the tensor of (C,M) and (I, F ), characterized by the following
universal property:

FunTCatEx((C,M)(I,F ), (D, N)) ≃ FunCatb((I, F ),Fun((C,M), (D, N)))

Proposition 3.30 For every (I, F ) ∈ Catb and (C,M) ∈ TCatEx, the object (C,M)(I,F ) exists
and can be taken to be the stable category Fun(I, C) equipped with the bimodule M (I,F ) given
by the following formula:

M (I,F )(f, g) := Nat(F, (fop × g)∗M)

Proof. This is essentially the same proof as Proposition 3.26 which was done when I was stable
and F was further assumed exact in both variable (in the proof, I is denoted C); those assumptions
were only used to guarantee that we could restrict to categories of exact functors FunEx(C,−), as
we have dropped this requirement here, the proof goes through mutatis mutandis.

Suppose F,G : A → S are two functors valued in spaces and denote p : Un(F )→ Aop the left
8In fact, we could redo a lot of the previous section with Catb instead and show it is presentable, symmetric

monoidal. Note however that it is not the tangent of Cat; indeed, it is an even further refinement of it, the
unstraightening of I 7→ Fun(TwAr(I), S) which is.
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fibration classifying F . Then F is the left Kan extension of the functor cst∗ : Un(F )→ S constant
with value ∗ along p by [GHN17, Corollary 7.5]. Hence, we get that

Nat(F,G) ≃ Nat(cst∗, G ◦ pop) ≃ lim
Un(F )

G ◦ pop

This allows use to compute the bimodule in some examples where p is well understood.
■ Example 3.31 Suppose F : Iop × I → S is constant at the point ∗, then F is classified by the
identity idIop×I . Let (C,M) be a laced category, then:

Nat(∗, (fop × g)∗M) ≃ lim
(i,j)∈Iop×I

M(f(i), g(j))

In particular, in the case where I = [n] is the linearly order poset with n elements, we get that

M ([n],∗)(f, g) ≃M(f(n), g(0))

Viewing a functor f : [n] → C as the data of objects X0, ..., Xn with maps Xi → Xi+1, the above
bimodule is simply M(Xn, Y0) for two chains (Xi) and (Yi). ■

■ Example 3.32 Suppose I = ∆1 and take F := Map∆1 to be mapping space bifunctor. Let
f : X → Y and g : X ′ → Y ′ be two arrows of C and M a C-bimodule, then, we have an equivalence

Nat(Map∆1 , (fop × g)∗M) ≃M(X,X ′)×M(X,Y ′) M(Y, Y ′)

where the maps of the pullback are induced by f and g under M .

More generally, if I = [n] and F = Map[n] its mapping space, then Map[n] : [n]op × [n]→ S is
classified by the right fibration9 TwAr([n])→ [n]× [n]op hence we have

Nat(Map[n], (fop × g)∗M) ≃ lim
(i≤j)∈TwAr([n])op

M(f(i), g(j))

which recovers the above when n = 1. ■

If C is a stable category, then the tensor with some category I is given by the the smallest
stable subcategory CI of Fun(Iop, Ind(C)) containing the left Kan extension Li,X of functors :
{i} → Ind(C) along {i} ⊂ Iop (see [Sau23a, Proposition 2.2] where CI is denoted I ⊗ C, and
the upcoming [LNS25] where such ideas are greatly expanded upon via the formalism of oplax
colimits). There is a canonical functor ϕ : C × I → CI sending (X, i) to Li,X .

Proposition 3.33 For every (I, F ) ∈ Catb and (C,M) ∈ TCatEx, the object (C,M)(I,F ) exists
and its underlying stable category is CI . Moreover, if p : C × I → C is the projection, then the
associated bimodule is given by the left Kan extension of M ◦(pop×p) along ϕop×ϕ. Explicitly,
for f, g ∈ CI , this is the following colimit:

M(I,F )(f, g) ≃ colim
i∈I

M(f(i), g(i))

where we wrote M for its extension to a colimit-preserving Ind(Cop)⊗L Ind(C)→ Sp.

Proof. Again, we can adopt the same proof strategy as in Proposition 3.26: we have identified
the correct underlying stable categories and we are reduced to checking an equivalence of spaces
of natural transformations. Using that left Kan extension is left adjoint to precomposition reduces
the claim to the same equivalence, mutatis mutandis.

4 The K-theory of laced categories
4.1 Additivity and semi-orthogonal decompositions

Recall that a semi-orthogonal decomposition of a stable category C is the datum of a pair
subcategories (A,B) satisfying the following two conditions:

9This definition of the twisted arrow category follows the convention of [Lur08, Definition 5.2.1].

37



(Decomposition) Every X ∈ C fits in an exact sequence A→ X → B with A ∈ A and B ∈ B.

(Semi-orthogonality) For every A ∈ A and B ∈ B, mapC(A,B) ≃ 0

The semi-orthogonality condition ensures the decomposition of the first condition is unique, and
thus functorial, so that what we call a semi-orthogonal decomposition is also what Lurie calls a
recollement in [Lur17a, Appendix A.8]. In particular, such decompositions are equivalent to the
datum of a semi-split Verdier sequence, i.e. a null-composite sequence

A C Bi p

such that i is fully-faithful and has a right adjoint and p has a fully-faithful right adjoint. Passing
to right adjoints also gives a semi-split Verdier sequence which is split in the other direction, so
this presentation has the advantage of not choosing a side in what is usually called left-split and
right-split Verdier sequences.

We give the following definition in the laced setting:
Definition 4.1 Let (C,M) be a laced category. A laced semi-orthogonal decomposition of (C,M)
is a pair of laced categories ((A, N); (B, P )) with the following extra data and conditions:

(Underlying) The underlying pair of stable categories (A,B) is a semi-orthogonal decom-
position of C.

(Laced sub-categories) The laced functors (i, α) : (A, N) → (C,M) and (j, β) : (B, P ) →
(C,M) induce equivalences α : N ≃M ◦ (iop × i) and β : P ≃M ◦ (jop × j).

(Laced semi-orthogonality) For every A ∈ A and B ∈ B, M(A,B) ≃ 0.

Lemma 4.2 Let ((A, N); (B, P )) be a laced semi-orthogonal decomposition (C,M). Then, the
left adjoint p of the inclusion j : B → C upgrades to a laced functor (p, η) : (C,M) → (B, P )
such that

(A, N) (C,M) (B, N)(i,α) (p,η)

is a fiber-cofiber sequence in TCatEx.

Proof. It holds that the sequence

A C Bi p

is a fiber-cofiber sequence. To check its enhancement to TCatEx is a fiber-cofiber, it suffices to
check that α : N → M ◦ (iop × i) is an equivalence and that the mate of η, η̂ : (pop × p)!M → N
is also an equivalence. The former is clear and the second follows from the construction of η that
we are yet to give.

Remark that since p is left adjoint to j, left Kan extension along pop × p is computed by
precomposing by jop × j so we can take η̂ to be β−1 : M ◦ (jop × j) → N , which is indeed an
equivalence.

The next three lemmata provide examples ordered by complexity of laced semi-orthogonal
decompositions. First, let us remark that our definition encompasses the usual semi-orthogonal
decompositions:

Lemma 4.3 Let (A,B) be a semi-orthogonal decomposition of C. Then, ((A,MapA); (B,MapB))
is a laced semi-orthogonal decomposition of (C,MapC).

Proof. Since A and B are full subcategories, the mapping space functor are indeed restricted
along the inclusions, whereas the laced semi-orthogonality condition is simply semi-orthogonality
of the underlying stable decomposition.

Our first non-trivial example of the laced situation concerns the cotensor (C,M)([1],Map) from
Example 3.32. We claim that (C,M)([1],Map) plays the role of the arrow category C[1] in the laced
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world, and can be obtained as the semi-orthogonal decomposition of two copies of (C,M). In
fact, the symmetry implies that the decomposition is fully orthogonal, and adapting the proof of
the hermitian case (see Theorem 1.2.9 of [CDH+23b]), one could show that every fully-orthogonal
decomposition can be obtained by pulling back the target projection.

Lemma 4.4 Let (C,M) be a laced category. Then, ((C,M); (C,M)) is a semi-orthogonal decom-
position of (C,M)([1],Map).

Proof. It is a classical fact that C[1] is the semi-orthogonal decomposition of two copies of C, the
inclusions being given by i : X 7→ (X → 0) and j : X 7→ idX . Recall from Example 3.32 that the
bimodule of (C,M)([1],Map) fits inside the following cartesian square:

M ([1],Map)(f : X → Y, g : X ′ → Y ′) M(Y, Y ′)

M(X,X ′) M(X,Y ′)

M(f,−)
M(−,g)

Now, laced decomposition follows from plugging Y = Y ′ = 0 which makes the vertical maps into
equivalences, and plugging f, g being identities which makes every map into equivalences, so that
in both cases M ([1],Map) recovers M . If one plugs Y = 0 and g the identity of say X ′, then
horizontal maps are equivalences so in particular, M ([1],Map) vanishes which yields laced semi-
orthogonality.

Let us conclude this series of examples by a case which is not symmetric, in fact even not
fully-orthogonal, and concerns the cotensor (C,M)([1],∗) which was considered in example 3.31.

Lemma 4.5 Let (C,M) be a laced category. Then, ((C, 0); (C,M)) is a semi-orthogonal decom-
position of (C,M)([1],∗).

Proof. The underlying part is the same as the previous lemma, and this time, we have the
following formula:

M ([1],∗)(f : X → Y, g : X ′ → Y ′) ≃M(Y,X ′)
It follows that if Y = Y ′ = 0, M ([1],∗) vanishes whereas it recovers M in the case where f, g are
identities, so that we have laced decomposition. In fact, M ([1],∗) vanishes as soon as Y = 0 so that
we have also laced semi-orthogonality.

Proposition 4.6 The two adjoint functors L : C 7→ (C,Map) and Lace : TCatEx → CatEx

preserve semi-orthogonal decompositions.

Proof. For L, this is the content of Lemma 4.3. Let ((A, N); (B, P )) be a laced semi-orthogonal
decomposition of (C,M); here we will view M as an exact functor C → Ind(C) thanks to Remark
3.6. We want to show that Lace(C,M) admits (Lace(A, N),Lace(B, P )) as a semi-orthogonal de-
composition.

Let X ∈ C and f : X → M(X) so that (X, f) is any object of Lace(C,M). Since (A,B) is an
orthogonal decomposition of C, we have an exact sequence q(X) → X → p(X) where p : C → B
and q : C → A are the localisation functors and we omit to write the inclusions. Remark that
in this situation, the laced sub-category axiom implies that the space of maps q(X) → N(q(X))
and q(X) → M(q(X)) are equivalent (and dually for P and p). In particular, it follows that the
following diagram commutes and its bottom horizontal row is exact:

q(X) X p(X)

N(q(X)) M(X) P (p(X))

This is exactly the datum of an exact sequence in Lace(C,M) whose first term is in Lace(A, N),
last term is in Lace(B, P ) and middle term is (X, f), hence we have decomposition.

39



For the semi-orthogonality, recall that mapping spaces in Lace(C,M) can be expressed as
equalizers by combining 3.7 and [NS17], so that we are reduced to show that for every (A, f) ∈
Lace(A, N), (B, g) ∈ Lace(B, P ), the following spectrum vanishes:

Eq
(

mapC(A,B) mapInd C(A,M(B))
M(−)◦f

M(g)◦(−)

)
This follows from the fact that both mapC(A,B) and map(A,M(B)) vanish, the former by semi-
orthogonality of the underlying (A,B) and the latter by laced semi-orthogonality.

Finally, let us conclude by a few words on laced (semi-)additive invariants.

Definition 4.7 Let E be a stable category. We say that a functor F : TCatEx → E is laced
additive or laced split-Verdier localizing if it sends semi-orthogonal decompositions to direct
sum decompositions in E .

4.2 The universal property of laced K-theory
From the usual K-theory functor K : CatEx → Sp, the most natural way of producing a functor

from the tangent bundle is to left Kan extend along the cotangent complex L. Since L is left adjoint
to Lace, it follows that this left Kan extension is computed by precomposition by Lace, hence the
following definition.

Definition 4.8 We let Klace : TCatEx → Sp denote the composite

TCatEx CatEx SpLace K

It comes naturally equipped with a natural transformation Σ∞
+ Lace≃ → Klace.

By Proposition 4.6, Klace is laced-additive, since K : CatEx → Sp is and Lace preserves
orthogonal decompositions. In fact, the K-theory functor enjoys a universal property with respect
to additive functors, which we can obtain by reformulating the main result of [BGT13]:

Proposition 4.9 — Blumberg-Gepner-Tabuada. The natural transformation Σ∞
+ ι→ K of functors

CatEx → Sp exhibits algebraic K-theory as the initial additive invariant under Σ∞
+ ι.

Proof. Recall from [BGT13] that there is a stable categoryMadd of additive motives given with
a functor Uadd : CatEx →Madd such that for every stable E , there is an equivalence

U∗
add : FunEx(Madd, E) Funadd(CatEx, E)≃

where the right hand side denotes additive functors CatEx → E . Remark that the following
diagram commutes:

Fun(Madd, E) Fun(CatEx, E)

FunEx(Madd, E) Funadd(CatEx, E)

U∗
add

≃

⊂ ⊂

and every arrow has a left adjoint. By unicity, the diagram of left adjoints also commutes and it
follows that if F is any functor CatEx → E , then the initial additive invariant under F is given by
(P1((Uadd)!F ))◦Uadd, where (−)! indicates left Kan extension along (−) and P1 : Fun(Madd, E)→
FunEx(Madd, E) is the first Goodwillie derivative.

Left Kan extension along f sends Map(X,−) to Map(f(X),−) and is a colimit-preserving
operation. Applied to Σ∞

+ ι, which is the infinite-suspension of Map(Spfin,−), the left Kan ex-
tension along Uadd yields Σ∞

+ Map(Uadd(Spfin),−). Taking the first Goodwillie derivative yields
the spectrally-corepresented functor map(Uadd(Spfin),−); the argument is eventually spelled out
in Lemma 5.23 and uses that map(X,−) is exact and satisfies Ω∞ map(X,−) ≃ Map. But the
following has been shown in [BGT13]:

K(C) ≃ mapMadd
(Uadd(Spfin), Uadd(C))
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hence K is the wanted functor. This concludes.

Actually K : CatEx → Sp has a stronger property: it is Verdier localizing and in particular,
semi-split Verdier localizing, so it is also universal as a semi-additive invariant. It follows from
purely formal manipulations that Klace also enjoys a universal property with respect to (laced
semi-)additive functors.

Theorem 4.10 The natural transformation Σ∞
+ Lace≃ → Klace of functors TCatEx → Sp exhibits

laced K-theory as the initial additive invariant under Σ∞
+ Lace≃.

Proof. This is a completely formal corollary from the above proposition and the following fact:
the adjunction between L and Lace preserves orthogonal decomposition by Proposition 4.6. Indeed,
firstly, since Lace preserves additive sequences and K : CatEx → Sp is additive, so is Klace. Using
the adjunction between the precomposition functors L∗ and Lace∗, for every functor F : TCatEx →
Sp, there is an equivalence

Nat(Σ∞
+ ιLace, F ) ≃ Nat(Σ∞

+ ι, F ◦ L)

If F is additive, so is F ◦L hence by Theorem 4.9, the right hand side is equivalent to Nat(K,F ◦L)
which is itself equivalent to Nat(Klace, F ) using the adjunction between L∗ and Lace∗ again. This
concludes.

Remark 4.11 In the laced setting, the construction of non-commutative additive motives of
[BGT13] or the Poincaré version of [CDH+23d] can be adapted to give a presentable stable
Mlace

add and a universal laced-additive U laceadd : TCatEx → Motlaceadd . As in loc. cit., this is done
using Proposition 5.3.6.2 of [Lur08], and then taking the Spannier-Whitehead stabilization, once
set-theoretic problems have been dealt with. Alternatively, one could show that those motives
are the stable envelope of an additive category obtained as the localization of TCatEx. Since
this category of motives will not play a role in the subsequent sections, we will save ourselves
the trouble and delay this construction to later work.

Supposing Motlaceadd built, the proof of Theorem 4.10 can be worked backwards to give a
similar formula for Klace as Blumberg-Gepner-Tabuada’s formula for K-theory.

With monoidality, one can deal away with the natural transformation. Recall the following
result [BGT14, Theorem 1.5], for which we give a model-independent proof:

Proposition 4.12 The K-theory functor K admits a lax-monoidal refinement which makes it the
initial lax-monoidal additive functor CatEx → Sp.

Proof. The category of additive motives Motadd admits a stable symmetric monoidal structure
such that Uadd : CatEx → Motadd is symmetric monoidal and thus the unit is given by Uadd(Spfin);
this follows from the universal property if we can check that the composite

CatEx ×CatEx CatEx Motadd
⊗ Uadd

is additive in each variable; but this is clear because − ⊗ C preserves adjunctions and cofiber
sequences hence split-Verdier sequences. In consequence, Corollary 6.8 of [Nik16] implies that
map(Uadd(Spfin),−) is the initial object of FunEx

lax(C,Sp). Since Uadd is a symmetric monoidal, it
induces an equivalence

FunEx(Motadd,Sp)⊗ Funadd(CatEx,Sp)⊗U∗
add

of the symmetric monoidal refinements of the functor categories. In particular, this equivalence
descends to the category of algebra objects, i.e. lax-monoidal functors, which implies the result.

By Corollary 3.21, the cotangent complex functor L : CatEx → TCatEx is a (strong) monoidal
functor so that its right adjoint Lace inherits a lax-monoidal structure, which induces a lax-
monoidal refinement of Klace : TCatEx → Sp.
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Proposition 4.13 The functor Klace is the initial lax-monoidal additive functor TCatEx → Sp.

Proof. By the above discussion, the adjunction between L and Lace induces a functor

Lace∗ : Alg(Funadd(CatEx,Sp)⊗) −→ Alg(Funadd(TCatEx,Sp)⊗)

which is left adjoint to L∗. In particular, it preserves the initial object which is K-theory so that
the claim follows.

4.3 Flavours of laced-Verdier sequences
We dedicate this section to talking about the equivalent of Verdier and Karoubi sequences in

the laced setting. The characterizations of Proposition 3.16 assemble to give a characterization of
null-composite sequences which are both fiber and cofiber sequences in TCatEx;

Definition 4.14 A sequence e : (C, F ) (D, G) (E , H)(i,α) (p,β) is a naive laced-Verdier sequence
if it is a fiber and a cofiber sequence in TCatEx. Equivalently, this is the following conditions:

• The sequence of stable categories C D E is a Verdier sequence.

• The natural transformation α : F ≃−→ G◦(iop×i) and β̂ : (pop×p)!G
≃−→ H are equivalences,

where β̂ is the mate of β.

For abstract reasons, there exists a universal laced-Verdier localizing invariant under Σ∞
+ Lace≃.

However, unlike in the split case, it need not be that Lace preserves Verdier sequences and thus,
there is no reason to expect that Klace = K ◦Lace would be the invariant obtained by the previous
abstract procedure.

We can try to circumvent this issue by specifically adding to the conditions of Definition 4.14
that Lace sends such sequences to Verdier sequences. Though this fixes the problem in K-theory,
this is unfortunately too ad-hoc in general and we will need an even stronger condition so that
the definition plays nicely with the functor THH : TCatEx → Sp which will be built in the next
section.

Definition 4.15 A sequence e : (C, F ) (D, G) (E , H)(i,α) (p,β) is a fine laced-Verdier sequence
if it is a naive Verdier sequence such that the following condition is realized:

• For every n ≥ 0, the sequence

Lace(C,ΣnF ) Lace(D,ΣnG) Lace(E ,ΣnH)

is a Verdier sequence.

A functor TCatEx → E which sends fine laced-Verdier sequences to exact sequences in a stable
E will be called weakly laced-Verdier localizing.

In particular, fine laced-Verdier sequence are laced-Verdier sequences. Hence, as the name
suggests, laced-Verdier localizing functors are in particular weakly laced-Verdier localizing.

Proposition 4.16 The functor Klace : TCatEx → Sp is weakly laced-Verdier localizing. Conse-
quently, it is also the initial such functor under Σ∞

+ Lace≃.

Proof. Thanks to Proposition 2.4, the functor K : CatEx → Sp is Verdier-localizing (the proof
of this fact can be found for instance in [Sau23a, Theorem 3.13] or [HLS23, Theorem 6.1] for a
minimal argument), hence this is immediate.

Thanks to Corollary 5.34, having put the suspensions in the previous definition will imply that
THH : TCatEx → Sp is weakly laced-Verdier localizing as such functors are of course stable under
filtered colimits.
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5 Trace-like functors and THH of laced categories
In the previous sections, we have built a category TCatEx and extended algebraic K-theory

into a functor Klace : TCatEx → Sp which we have characterized by a universal property. This
could have been achieved in CatEx already; in fact the previous section would be shallow without
the universal property of K-theory as a functor from stable categories. However, the salient feature
of TCatEx is that it will allow to treat THH on equal footing with laced K-theory.

5.1 A primer on THH of stable categories
As in the case of K-theory, to make the extension of THH to laced categories, it is easiest to

first reformulate the definitions in the stable case. The purpose of this section is thus to set-up
different definitions of classical objects, which will extend in a straightforward manner to TCatEx.
The results here are folklore for which we could not find a reference.

Before we delve into THH proper, let us introduce an intermediate object called unstable
topological Hochschild homology, defined for any category.

Definition 5.1 Let C be any category. The unstable topological Hochschild homology of C is the
space uTHH(C) given by the following coend:

uTHH(C) =
∫ X∈C

MapC(X,X)

where MapC denote the mapping space of C. This defines a functor uTHH : CatEx → S.

The intuition behind this formula is the following: the bivariant Yoneda lemma tells us for
a functor F : Cop × C → S, Nat(Map, F ) is equivalent to the end

∫
X∈C F (X,X). The dual

construction hence corresponds to Map⊗Cop×CF . When F is taken to be Map itself, this mimics
the formula R⊗Rop⊗R R which defines THH(R) for a ring spectrum R in an unstable manner.

Remark 5.2 Let C be a category. We have an equivalence

uTHH(C) ≃ colim
f :X→Y ∈TwAr(C)

MapC(Y,X)

This is by fiat, following [GHN17, Definition 2.6]; recall that we defined the twisted arrow
category so that TwAr(C)→ C×Cop is the right fibration classifying MapC so that the convention
of loc. cit. coincides with our own.

In particular, if C is a space, then we have Ar(C) ≃ TwAr(C) and every arrow in the
previous colimit can be taken to be a self-equivalence X → X. Thus, for a space X, uTHH(X)
is equivalently given by the mapping space Map(S1, X), i.e. the free loop space on X. In
particular, the following composite is natural:

ι C → Fun(S1, ι C) ≃ uTHH(ι C)→ uTHH(C)

and thus provides a natural transformation ι→ uTHH.

The stabilized version of unstable topological Hochschild homology is none other than the
usual THH. In fact, we will prove in the more general setting of laced category (see 5.28) that the
stabilization of uTHH, in the sense of Goodwillie calculus, is indeed given by THH.

Definition 5.3 Let C be a stable category; in particular C is enriched in spectra and we denote
map the enriched mapping object. The topological Hochschild homology of C is the spectrum
THH(C) given by the following coend:

THH(C) =
∫ X∈C

mapC(X,X)

This defines a functor THH : CatEx → Sp to spectra, equipped with a canonical natural
transformation uTHH→ Ω∞ THH, or equivalently Σ∞

+ uTHH→ THH.
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As for its unstable counterpart, one has to understand this coend as perfoming some sort of
relative tensor product map⊗Cop⊗C map, though this time, we will show it actually recovers the
classical THH(R) := R⊗Rop⊗R R.

Remark 5.4 As in the previous remark, we have the following formula for THH(C):

THH(C) ≃ colim
f :X→Y ∈TwAr(C)

mapC(Y,X)

and the map Σ∞
+ uTHH→ THH is induced by taking the colimit over TwAr(C) of the natural

transformation Σ∞
+ Map→ map.

Remark 5.5 This definition of THH is not the usual one in the literature for stable categories;
for instance, the formula in Section 10 of [BGT13] is both more intricate and closer to the cyclic
bar construction of THH for rings, as in Definition III.2.3 of [NS17] or the more recent version
with coefficients in [KMN23].

We will show in the next section that the different formula agree. Namely, let C be a
category. Then, Proposition 5.10 will show that there is an equivalence

uTHH(C) ≃
∣∣∣∣∣ ... colim

X,Y ∈ι C
MapC(X,Y )×MapC(Y,X) colim

X∈ι C
MapC(X,X)

∣∣∣∣∣
with face maps given by suitable compositions. When C is further stable, we will explain in
Remark 5.29, using Proposition 5.28, that there is a second equivalence:

THH(C) ≃
∣∣∣∣∣ ... colim

X,Y ∈C
mapC(X,Y )⊗mapC(Y,X) colim

X∈C
mapC(X,X)

∣∣∣∣∣
In particular, our definition of THH is the same as that of [BGT13] or [HSS17].

Remark 5.6 Let C be stable and consider the composition:

ι C → Fun(S1, ι C) ≃ uTHH(ι C)→ uTHH(C)→ Ω∞ THH(C)

This map is natural in C, thus induces a natural transformation Σ∞
+ ι → THH. The Bökstedt

trace K → THH is then obtained by the universal property of K, using that THH is additive
(see [BGT13, Proposition 10.2]).

5.2 Laced THH, trace-equivalences and the cyclic bar construction
The advantage of the definition of THH we gave in the previous section is that it already

features a bimodule, namely mapC . By simply replacing it with any bimodule M : Cop ⊗ C → Sp,
we get a definition of THH adapted to laced categories:

Definition 5.7 Let (C,M) be a laced category. The topological Hochschild homology of (C,M) is
the spectrum THH(C,M) given by the following coend:

THH(C,M) =
∫ X∈C

M(X,X) ∈ Sp

This defines a functor THH : TCatEx → Sp. More generally, for pairs (I, F ) with I a category
and F a functor F : Iop×I → S, we can also define the unstable topological Hochschild homology
by:

uTHH(I, F ) =
∫ X∈I

F (X,X) ∈ S

The functor uTHH : Catb → S is such that, when restricted to TCatEx, we have a natural
transformation Σ∞

+ uTHH→ THH.
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Comparing the above definition with Definition 5.3, we see that THH(C) ≃ THH(C,map). In
particular, the natural transformation β : K → THH of functors CatEx → Sp yields a natural
transformation Klace → THH, which we are tempted to call the laced Bökstedt trace, given by:

K(Lace(C,M)) THH(Lace(C,M),map) THH(C,M)
βLace(C,M)

where the second map is induced by the counit of the adjunction L ⊣ Lace. Let us stress that the
second map is not an equivalence, as we have THH(C, 0) ≃ 0 but THH(Lace(C, 0),map) ≃ THH(C).
This map will be thoroughly investigated in §8.

Lemma 5.8 We have an equivalence of spectra

THH(C,M) ≃ colim
f :X→Y ∈TwAr(C)

M(Y,X)

which is natural in (C,M). Similarly, for spaces and uTHH restricted to TCatEx:

uTHH(C,M) ≃ colim
f :X→Y ∈TwAr(C)

Ω∞M(Y,X)

Proof. As in Remarks 5.2 and 5.6, this is by fiat following [GHN17, Definition 2.6].

The above definition is unusual, in the sense that THH is usually defined as the result of a
cyclic bar construction, i.e. the geometric realization of a cyclic object which looks like the Bar
construction where some terms have been modified to be cyclic. We will recover such an expression
by combining the previous lemma and the Bousfield-Kan formula. Moreover, in the laced realm,
this cyclic bar construction can be characterized as the universal way to enforce a property on a
functor F : TCatEx → Sp. We call this property being trace-like, for reasons that will only come
to light in the following sections.

Let us first build the layers of our cyclic bar construction. If (C,M) is a laced category,
then it follows from Example 3.31 that the objects of the category Lace((C,M)([n],∗)) are chains
X0 → ... → Xn in C and a point in Ω∞M(Xn, X0), which we can equivalently see as an arrow
Xn →M(X0) in Ind C.

Hence, Lace((C,M)([n],∗)) looks like a category of n-cycles where n−1 terms are simply arrows
Xi → Xi+1, i.e points in Map(Xi, Xi+1), and the last term is "cycling back", but in a twisted
way, giving a point in Map(Xn,M(X0)). When M = mapC , this is exactly the data of the n-th
simplicies of the cyclic bar construction of Remark 5.5. Hence, we feel justified to give the following
definition:

Definition 5.9 Let (C,M) be a laced category, we denote Barn(C,M) the following space :

Barn(C,M) := Lace≃((C,M)([n],∗))

By functoriality of the cotensor, we have a simplicial space Bar•(C,M) : ∆op → S and in fact,
a functor Bar• : TCatEx → S∆op . We call it the cyclic bar construction of the functor Lace≃,
although we remark that it need not be a cyclic object in general.

This object has actually a lot more structure which is not recorded by the simplicial structure
and it will be the main ordeal of later sections to study systematically this extra structure (or more
precisely, this is systematically done in [HNS25] because we will only sketch some of the details of
this structure); for now, we will be content with the above definition, and the fact that it recovers
unstable THH:

Proposition 5.10 Let (C,M) ∈ TCatEx. We have a natural equivalence

uTHH(C,M) ≃ |Bar•(C,M)|

Proof. By Lemma 5.8, uTHH(C,M) is given by the colimit of the composite Ω∞M ◦ p where p
is the right fibration TwAr(C)→ C × Cop classifying the mapping space of C. In formula, this is:

uTHH(C,M) ≃ colim
f :X→Y ∈TwAr(C)

Ω∞M(Y,X)
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Let Tn := Map(∆n,TwAr(C)), then the inclusion T0 ≃ ιTwAr(C)→ TwAr(C) induces maps

αn : Tn T0 TwAr(C) Sd0 Ω∞M◦p

By Corollary 12.5 of [Sha23] (the so-called Bousfield-Kan formula), taking the colimit of αn pro-
duces a simplicial object X• whose geometric realization recovers uTHH(C,M).

We now identify each Xn in terms of the cyclic bar construction: the two do not quite coincide,
instead we now show that Xn is the nth-stage of the edgewise-subdivision of the cyclic bar con-
struction; this is enough to conclude because this subdivision preserves the geometric realization.

The edgewise-subdivision is the functor e : ∆→ ∆ induced by the inclusion [n]→ [n] ∗ [n]op ≃
[2n + 1] in the first factor. For any category X, precomposition by e induces an equivalence
TwAr(X) ≃ X ◦ e by viewing both as quasi-categories. Moreover, e is a combinatorial subdivision
in the sense of [Bar13, 2.2] although we remark that because of different conventions, our edgewise-
subdivision does not coincide with that of Barwick. Nonetheless, eop : ∆op → ∆op is cofinal, so
that showing that Xn ≃ Bare(n)(C,M) concludes.

By definition, we have Bare(n)(C,M) ≃ Lace≃((C,M)([n]op∗[n],∗)). Remark that on the under-
lying stable categories, we have C[n]op∗[n] ≃ TwAr(C)[n]; we can also rewrite the bimodule under
this equivalence, and we claim the following holds:

(C,M)([n]op∗[n],∗) ≃ (TwAr(C),M ◦ p)([n],∗)

This is the case when n = 0 by Example 3.31. More generally, recall that if I = {i0 < ... < iκ} is
linearly ordered, the formula for M (I,∗) is the evaluation M(X(iκ), Y (i0)), again by Example 3.31.
For I = [n]op ∗ [n], this is the following diagram where we colored in red the rightmost-vertical
arrow because it corresponds to the first point when passing to the twisted-arrow-category point
of view:

• • ... • •

• • ... • •

In particular, we deduce that M ([n]op∗[n],∗) ≃ (M ◦ p)([n],∗). Finally, to recover the colimit defining
Xn, remark that there is an equivalence

Lace≃(D, N) ≃ colim
X∈ιD

Ω∞N(X,X)

since Lace≃(D, N) → ιD is the left fibration classifying Ω∞N ◦∆, where ∆ : ι C → ι Cop × ι C is
the diagonal by Lemma 3.13. Applied to the rewriting we produced, we get an equivalence

Bare(n)(C,M) ≃ colim
Y ∈ιTwAr(C)[n]

Ω∞M ◦ p(Y (0))

where we recognize on the right hand side the definition of Xn. This concludes.

Inclusion of the 0-simplices yields a natural transformation Lace≃ → uTHH. Our goal is to
show that this natural transformation exhibits its target as the initial functor under Lace≃ for a
certain property, which we call being trace-like. In fact, we will show more generally that this
happens for the natural transformation F → cyc(F ), where cyc(F ) is cyclic bar construction
adapted to a functor F : TCatEx → Sp, which plays the role of Lace≃ in the above story. Let us
first explain what are trace-like functors.

Definition 5.11 Let f, g : (C,M) → (D, N) be two laced functors. A trace homotopy from f to
g is a functor H : (C,M)→ (D, N)([1],∗) such that the following diagram commutes:

(D, N)

(C,M) (D, N)([1],∗)

(D, N)

H

g

f

d0

d1
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A laced functor f : (C,M) → (D, N) is a trace equivalence if there exists a laced functor
g : (D, N)→ (C,M) such that g ◦ f and f ◦ g are trace homotopic to their respective identities.

■ Example 5.12 Both d0 and d1 are trace-equivalences, with the same trace-inverse s : (C,M) →
(C,M)([1],∗). Indeed, since s ◦ d0 ≃ s ◦ d1 ≃ id already, it suffices to find a laced arrow

H : (C,M)([1],∗) (C,M)([1]×[1],∗)

such that d0 ◦H ≃ id and d1 ◦H ≃ d0 ◦ s. We can simply pick H induced by the first projection
[1]× [1]→ [1] via the functoriality of the cotensor. ■

Remark 5.13 Since Lace≃ is the functor corepresented by Spfin, there is an equivalence

Bar• Fun((C,M), (D, N)) ≃ MapTCatEx

(
(C,M), (D, N)([•],∗)

)
Under this equivalence, the 0-simplices are exactly laced functors (f, α) : (C,M)→ (D, N) and
1-simplices are the trace homotopies, whose end points are given by the faces of the simplicial
structure.

Let us give a non-trivial example of trace equivalences:

Lemma 5.14 Let L : C D : R be an adjunction between exact functors, and let M : Dop ⊗
C → Sp be exact. Then, the unit ε and the counit η of the adjunction promote L and R to laced
functors LM := (L,M ◦ (idop × ε)) and RM := (R,M ◦ (ηop × id)) such that

(C,M ◦ (Lop × id)) (D,M ◦ (idop ×R))
LM

RM

are trace-inverses to one another.

Proof. What we have described is clearly a pair of laced functors, so it remains to check that
both composite are trace equivalent to the identity. The argument will be dual so we focus on
furnishing a commutative diagram:

(C,M ◦ (Lop × id))

(C,M ◦ (Lop × id)) (C,M ◦ (Lop × id))([1],∗)

(C,M ◦ (Lop × id))

H

RM ◦LM

id

d0

d1

exhibiting RM ◦ LM as trace homotopic to id.
On underlying stable categories, we let H : C → C[1] be the functor sending X to εX : (X →

RL(X)), and unpacking the definitions via Example 3.31, the natural transformation we have to
supply is given on objects X,Y ∈ C by:

M(L(X), Y ) M(LRL(X), Y )

hence we can simply take M ◦ (L(ε)op × id). This concludes.

Definition 5.15 A functor F : TCatEx → E is trace-like if it inverts trace equivalences.

Remark 5.16 Note that since they are pointed, every stable category fits in an adjunction
0 C. In particular, Lemma 5.14 for M = 0 implies that for F trace-like, there is an
equivalence

F (C, 0) ≃ F (0, 0)

Our first result shows a simpler criterion to check that a functor is trace-like.
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Proposition 5.17 Let F : TCatEx → E such that any of the two following conditions are met:

• For every laced (C,M), F sends d0, d1 : (C,M)([1],∗) → (C,M) to an equivalence.

• For every laced (C,M), F sends d̂0, d̂1 : (C,M)→ (C,M)([1],∗) to an equivalence.

Then, F is trace-like (and in particular, both of the above are realized).

Proof. We treat the first case, the second is dual. Let f : (C,M)→ (D, N) be a trace-equivalence
with trace-inverse g : (D, N) → (C,M), and let H and H ′ be the two trace-homotopies to the
identity. Since d0 is a trace equivalence and d0 ◦H ≃ id, F maps H to an actual equivalence, and
thus, it also maps d1 ◦H ≃ g ◦ f to an equivalence. The same argument applies to H ′ and shows
F also inverts f ◦ g. Hence F (f) is an actual equivalence with inverse F (g).

In fact, since there is a diagram

(C,M)

(C,M) (C,M)([1],∗)

(C,M)

s

id

id

d0

d1

the first condition of Proposition 5.17 could be stated only for d0 or d1, or for the maps (C,M)→
(C,M)([1],∗). This also holds dually for (C,M)([1],∗) and ŝ, d̂0, d̂1. In particular, we note that we
were a bit vague in Definition 5.11 about which direction the trace homotopies between g ◦ f and
id or f ◦ g and id are supposed to go but the above result implies that all four possible classes of
arrows are inverted by trace-like functors, no matter which definition of them is taken.

Lemma 5.18 Let (C,M) be a laced category and [n]→ [m] a map in ∆. The following maps are
trace-equivalences:

1. (C,M)([m],∗) → (C,M)([n],∗)

2. (C,M)([n],∗) → (C,M)([m],∗)

Proof. We treat the first case, the second is dual. Trace equivalences are stable under compo-
sition and if f is a trace-equivalence and g ◦ f = id or f ◦ g = id, then so is g. Hence, given the
structure of ∆, it is sufficient to treat the case of the injective map [n]→ [n+ 1] which only misses
n + 1. Denote (p, α) : (C,M)([n+1],∗) → (C,M)([n],∗) and (i, β) the one-sided inverse given by the
projection [n+ 1]→ [n] sending both n and n+ 1 to n. We need to find a trace-homotopy between
the composition ip and id: this is a functor H : (C,M)([n+1],∗) → (C,M)([n+1]×[1],∗) such that

(C,M)([n+1],∗)

(C,M)([n+1],∗) (C,M)([n+1]×[1],∗)

(C,M)([n+1],∗)

H

ip

id
d0

d1

is a commutative diagram. But there is already such a commutative diagram of categories:

[n+ 1]

[n+ 1]× [1] [n+ 1]

[n+ 1]

j0 id

H̃

j1
ĩp
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where H̃ : [n + 1] × [1] → [n + 1] maps a tuple (k, i) to k if i = 0 or k ≤ n and n otherwise. The
functoriality of the cotensor then concludes.

As a consequence of Lemma 5.18, the simplicial object (C,M)([•],∗) has its faces and degeneracies
being trace-equivalences; this is similar to how the Q-construction Q•(C) which is used to define
K-theory has its faces being split-Verdier projections, see [CDH+23b, Proposition 2.7.2]. As a
consequence of Proposition 5.17, F is trace-like if and only if it sends this simplicial equivalence
to the constant simplicial object F (C,M).

Definition 5.19 Let F : TCatEx → E be a functor. We let cyc(F ) denote the functor given
pointwise by the following geometric realization:

cyc(F )(C,M) :=
∣∣∣∣F ((C,M)([•],∗)

) ∣∣∣∣
The association F 7→ cyc(F ) upgrades to a functor cyc : Fun(TCatEx, E) → Fun(TCatEx, E),
which we call the cyclic bar construction functor. The inclusion of 0-simplices provides a
natural transformation ηF : F → cyc(F ) which is itself natural in F , hence an augmentation
η : id→ cyc.

In Proposition 5.10, we have proven that uTHH ≃ cyc(Lace≃).

Proposition 5.20 Let F : TCatEx → E be any functor. Then cyc(F ) is trace-like.

Proof. Using Proposition 5.17, we are reduced to showing that the following simplicial map
(actually there are two such maps but they are simplicially homotopic) induces an equivalence on
geometric realizations:

F ((C,M)([•],∗)) F ((C,M)([1]×[•],∗))

The above map has a one-sided inverse, so it suffice to show the composite

ϕ• : F ((C,M)([1]×[•],∗)) F ((C,M)([•],∗)) F ((C,M)([1]×[•],∗))

is simplicially homotopic to the identity. This is exactly providing maps hi : F ((C,M)([1]×[n],∗))→
F ((C,M)([1]×[n+1],∗)) such that d0h0 = id and dnhn ≃ ϕn (as well as other simplicial relations that
we omit to write).

All of the above wanted maps will be induced by maps in ∆. Indeed, we can consider the map
[1] × [n] → [1] × [n + 1] mapping (ϵ, k) to itself if k ≥ i and to (0, k) otherwise. This satisfies the
correct relations, hence the result.

In particular, we get that uTHH is trace-like. In fact, we now show that it is actually initial
with this property under Lace≃.

Theorem 5.21 Let F : TCatEx → E be a functor. The natural transformation ηF : F → cyc(F )
identifies the latter as the initial trace-like functor under F .

Proof. We verify that condition (3) of Proposition 5.2.7.4 of [Lur08] is satisfied, since this cri-
terion implies that cyc is left adjoint to the inclusion of trace-like functors into Fun(TCatEx, E),
with the natural transformation η realizing the unit of the adjunction.

We have seen that if F is trace-like, then ηF is an equivalence. We now show that for any F ,
the two maps ηcyc(F ) and cyc(ηF ) are homotopic. Remark that

((C,M)([n],∗))([m],∗) ≃ ((C,M)([m],∗))([n],∗) ≃ (C,M)([m]×[n],∗)

hence, cyc cyc(F ) is the colimit of the bisimplicial object F (((C,M)([•1]×[•2],∗)), and the two maps
ηcyc(F ) and cyc(ηF ) are simply induced by the horizontal and vertical inclusions in ∆×∆. Thus,
the flip involution ∆×∆→ ∆×∆ which reverses the two coordinates yields the wanted homotopy.
In particular, since cyc(F ) is trace-like by Proposition 5.20, we see that ηcyc(F ) is an equivalence
and thus, this also holds for cyc(ηF )
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By combining Proposition 5.20 and Proposition 5.17, we have a functor cyc : F 7→ cyc(F )
equipped with a natural transformation η : id =⇒ cyc whose image is exactly the full subcategory
T of Fun(TCatEx, E) composed of trace-like functors. This is precisely (3) of Proposition 5.2.7.4
of [Lur08] as wanted.

Combining the Theorem with Proposition 5.10, we have:

Corollary 5.22 The natural transformation Lace≃ → uTHH exhibits the latter as the initial
trace-like invariant under Lace≃. Since Σ∞

+ : S → Sp commutes with the formation of the
cyclic bar construction, this also applies to Σ∞

+ Lace≃ → Σ∞
+ uTHH.

5.3 Fiberwise-exact invariants and a first universal property for THH
In the previous section, we have shown that the natural transformation Lace≃ → uTHH

identified uTHH as the initial trace-like functor under Lace≃. We want to translate this knowledge
to the stable THH; for this, we need to understand the natural transformation Σ∞

+ uTHH→ THH.
Let us first deal with a simple case: if F : C → D is a functor between differentiable stable

categories, then, there is a natural transformation F → P1F whose target P1F is exact, which is
initial among such transformations. We say that P1F is the exact approximation of F .

Lemma 5.23 Let C be a stable category and F : C → Sp an exact functor. The natural transfor-
mation η : Σ∞

+ Ω∞F → F exhibits its target as the initial exact functor under its source.

Proof. Recall that the universal property of Ω∞ : Sp→ S implies that

(Ω∞)∗ : FunEx(C,Sp) FunREx(C,S)≃

is an equivalence. In particular, for every exact G : C → Sp, the top horizontal arrow of the
following commutative square is also an equivalence:

Nat(F,G) Nat(Ω∞F,Ω∞G)

Nat(Σ∞
+ Ω∞F,G) Nat(Ω∞F,Ω∞G)

≃

η∗

≃

Consequently, η∗ is an equivalence. This concludes.

In particular, if C is stable and X,Y ∈ C, then Σ∞
+ Ω∞M(X,Y ) → M(X,Y ) is an exact

approximation in M , since evX,Y : M 7→ M(X,Y ) is exact. Thus, for a fixed C, the natural
transformation

Σ∞
+ uTHH(C,−) =⇒ THH(C,−)

is obtained by taking a colimit of exact approximations. Since P1 is a left adjoint it commutes with
colimits and it follows that for a fixed C, THH(C,−) is the exact approximation of Σ∞

+ uTHH(C,−).
To get the universal property when C varies, we need to introduce a fibered version of the exact
approximation. More formally, let us give the following definition:

Definition 5.24 Let F : TCatEx → E be a functor, with E a stable category. We say that F is

• fiberwise-reduced if, for every stable C, the restriction FC : TCCatEx → E is reduced, i.e.
sends the zero bimodule to zero.

• fiberwise-exact if, for every stable C, the restriction FC : TCCatEx → E is exact between
stable categories.

In classical Goodwillie calculus, the exact approximation can be realized by first taking the
reduced approximation, i.e. splitting away F (0) from F (X) and then forming the excisive approx-
imation, which is given by the following formula when F is reduced10: colimn ΩnF (ΣnX). This
idea still works in the bundled version, as we now explain.

10and the target category admits filtered colimits, or at the very least, is differentiable in the sense of [Lur17a,
Definition 6.1.1.6]
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Lemma 5.25 Let F : TCatEx → E be a functor to a pointed category. Then, there exists an
initial natural transformation F → F red whose target is fiberwise-reduced.

Its fiber is the functor (C,M) 7→ F (C, 0); in particular, the retraction (C,M)→ (C, 0) induces
a splitting:

F (C,M) ≃ F red(C,M)⊕ F (C, 0)

for every (C,M) ∈ TCatEx.

Proof. Denote Fun∗(TCatEx, E) the full subcategory of Fun(TCatEx, E) spanned by fiberwise-
reduced functors, where E is a pointed category. We want to show the inclusion

Fun∗(TCatEx, E) Fun(TCatEx, E)

admits a left adjoint. Using the existing literature, we will show that it follows from the existence
of a left adjoint for the restrictions to each tangent category TCCatEx where it is a standard claim
that the category of reduced functor is a localization of the category of all functors.

Since fgt : TCatEx → CatEx is a cocartesian fibration classifying Bimod(−), it follows from
combining [Lur08, Corollary 3.2.2.13] and [GHN17, Proposition 7.3] that this inclusion can be
rewritten

Γ(Uncart(Fun∗(Bimod(−), E))) Γ(Uncart(Fun(Bimod(−), E)))

where Uncart(F ) denotes the cartesian fibration classifying a functor F , and Γ denotes the cate-
gories of sections of a given fibration.

Applying the dual version of [HY17, Proposition 5.1] for cartesian fibrations, we get that the
existence of a left adjoint follows from the existence of a left adjoint for each fiber and that the
restriction of the global left adjoint recovers the fiberwise adjoint. The claim and the formula now
follow from the case n = 0 of [Lur17a, Lemma 6.1.1.33].

Recall that a pointed category with finite limits and filtered colimits is called differentiable if
those two commute.

Lemma 5.26 Let F : TCatEx → E be a functor to a differentiable stable E . There exists an
initial natural transformation F → Pfbw

1 F with a fiberwise-exact target such that on each fiber,
the restriction of Pfbw

1 F coincides with the exact approximation of the restriction of F .

Proof. We can play the same yoga as the previous lemma, replacing Fun∗(Bimod(−), E) by
FunEx(Bimod(−), E). Again, the pointwise claim and the formula are classical and can be found
as the case n = 1 of [Lur17a, Lemma 6.1.1.33].

If F fiberwise-reduced, the usual formula for exact approximations of reduced functors gives:

Pfbw
1 F (C,M) := colim

n
ΩnF (C,ΣnM) (⋆)

If F is not fiberwise-reduced, the above formula for Pfbw
1 F still holds provided one replaces F by

F red in the right hand side.

Remark 5.27 Suppose F is trace-like, then ΩF (−,Σ−) is again trace-like. Indeed, for any laced
category, we have the following equivalence

(C,ΣM)([1],∗) ≃ (C([1],∗),ΣM ([1],∗))

as can be easily checked by the explicit formula of Example 3.31. Moreover, we also have a
splitting

F ((C,M)([1],∗)) ≃ F red((C,M)([1],∗))⊕ F (C([1],∗), 0)

In particular, it follows that Pfbw
1 preserves trace-like functors using (⋆).

We can now state the first universal property of THH, first in terms of uTHH and then, using
Corollary 5.22, in terms of Σ∞

+ Lace≃. We will need the following lemma:
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Proposition 5.28 The natural transformation Σ∞
+ uTHH→ THH exhibits its target as the initial

fiberwise-exact functor under its source. In consequence, Σ∞
+ Lace≃ → THH realizes THH as

the initial fiberwise-exact trace-like invariant under its source.

Proof. The second part follows from the first thanks to Remark 5.27, hence we focus on the first
part. It suffices to check the formula pointwise by Lemma 5.26 and we have already performed
this check after Lemma 5.23.

Remark 5.29 The following diagram is a commutative square of fully-faithful right adjoints:

Funtr−like,fbw−ex(TCatEx, E) Funtr−like(TCatEx, E)

Funfbw−ex(TCatEx, E) Fun(TCatEx, E)

It follows that the associated square of localizations obtained by taking left adjoints also com-
mutes. Note that cyc preserve fiberwise-exact functors, which is clear from the formula defining
it; moreover Pfbw

1 preserve trace-like functors by Remark 5.27. Consequently, each adjunction
must descent along the other localization. Ultimately, this is precisely saying that cyc and Pfbw

1
commute with one another.

Hence, THH can also be obtained as cyc(Pfbw
1 Σ∞

+ Lace≃), the cyclic bar construction applied
to a stabilized version of Σ∞

+ Lace≃; one readily checks that this gives the following formula:

THH(C,M) ≃
∣∣∣ ... colimX,Y ∈ι C mapC(X,Y )⊗M(Y,X) colimX∈ι C M(X,X)

∣∣∣
In particular, for M = mapC , this is what we claimed in Remark 5.5. Remark that the stabilized
version of Σ∞

+ Lace≃ is in particular some naive trace; by using the colimit formula induced by
Lemma 3.13, we deduce the following formula:

Pfbw
1 (Σ∞

+ Lace≃)(C,M) ≃ colim
X∈ι C

M(X,X)

Note also that its trace-like approximation, THH, is an actual trace: the trace of M seen as an
endomorphism of the dualizable Ind C in PrL

Ex, by [HSS17, Proposition 4.5].

As for Klace, we can upgrade the previous universal property to an absolute statement by adding
a lax-monoidality condition:

Proposition 5.30 The functor uTHH : TCatEx → S upgrades to the initial lax-monoidal trace-
like invariant. Consequently, the functor THH : TCatEx → Sp also upgrades to the initial
lax-monoidal, fiberwise-exact trace-like invariant.

Proof. We begin by proving the claim about uTHH. Denote T the localisation of TCatEx at
trace-equivalences, or equivalently at the collection of arrows (C,M)([1],∗) → (C,M). This is not
a Bousfield localisation but is nonetheless locally small since TCatEx is compactly generated by
Theorem 3.18 and the second description of the collection of arrows is stable under colimits.

Then, uTHH uniquely factors through the localization U : TCatEx → T and by Proposition
5.22, the resulting functor identifies as MapT (U(Spfin, id),−). Hence, the result follows from
[Nik16, Corollary 6.8] if we can show this localization is multiplicative. For this, it suffices that
the collection of trace-equivalence forms an ideal in arrows of TCatEx. This follows from showing
that trace-homotopic functors are stable under tensoring with an arbitrary laced category.

Consider a laced functor H : (C,M) → (D, N)([1],∗), then there is a composite functor H as
follows:

H : (C,M) ⊠ (E , P ) (D, N)([1],∗) ⊠ (E , P ) (D, N)([1],∗) ⊠ (E , P )([1],∗)

((D, N) ⊠ (E , P ))([1],∗)

H⊠id(E,P ) id ⊠s0

η
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Here the last vertical map η is obtained by using that (−)([1],∗) is lax-monoidal, which follows from
the universal property of 3.29 and the fact that Fun((E , P ),−) is lax-monoidal as a right adjoint
to the obviously monoidal (E , P ) ⊠−. We claim that there is a canonical

di ◦H ≃ (di ◦H) ⊠ id(E,P )

for i = 0, 1, i.e. that H witnesses the homotopy after tensoring by the arbitrary laced category
(E , P ). This is of course true before taking the last map in the composition defining H so that it
suffices to remark that there is a commutative diagram

(D, N)([1],∗) ⊠ (E , P )([1],∗) ((D, N) ⊠ (E , P ))([1],∗)

(D, N) ⊠ (E , P )

η

di⊠di

di

But this is precisely how the lax-monoidal structure is defined via the adjunction. This concludes
for the first part.

We now seek to deduce the claim on THH. Proposition 5.28 reduces us to show that the functor

Pfbw
1 : Funtr−like(TCatEx,Sp) −→ Funtr−like,fbw−ex(TCatEx,Sp)

is monoidal so that it upgrades to a left-adjoint functor between the category of lax-monoidal
such functors. But Pfbw

1 is a localization at the collection of arrows η : F (−) → T1F := ΩF (Σ−)
thus it suffices to check that η ⊗Day G is again inverted by the localization for any trace-like
G : TCatEx → Sp; in fact, we will not need the trace-like and the result is already true at the level
of general functors. Remark that η ⊗Day G fits in the following commutative diagram:

F ⊗Day G T1(F )⊗Day G

T1(F ⊗Day G) T1(T1(F )⊗Day G)
ηF ⊗DayG

η⊗DayG

ηT1(F ⊗DayG)

Hence, since arrows inverted by a localization satisfy 2-out-of-6, this concludes.

5.4 Topological Hochschild homology is the derivative of laced K-theory
To realize the result of the title, the first step is the following proposition, which is straightfor-

ward from Proposition 5.17.

Proposition 5.31 Suppose F is fiberwise-reduced and additive. Then F is trace-like.

Proof. Using Lemma 4.5, we know that we have a semi-orthogonal decomposition (C,M)([1],∗)

by ((C, 0); (C,M)) so in particular an exact sequence in TCatEx:

(C, 0) (C,M)([1],∗) (C,M)

In particular, an additive invariant F sends the above to a fiber sequence, and if it is further
reduced, it maps (C, 0) to zero, hence the second map becomes an equivalence. By Proposition
5.17, this means F is trace-like.

Together with the above proposition, Remark 5.16 actually implies that if F is additive, then
its fiberwise-reduction coincides with its trace-like approximation. Indeed, additive functors send
0 ∈ TCatEx to 0 and thus the trace-like approximation must be fiberwise-reduced; the above also
shows that the reduced approximation is automatically trace-like. Therefore we have obtained:
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Corollary 5.32 Let F : TCatEx → E be an additive invariant. Then the natural transformation
F → F red, as defined in Lemma 5.25, exhibits its target as the initial trace-like approximation
of its source. In other words, there is an equivalence

cyc(F ) ≃ F red

under F .

We can get a partial converse result by adapting a classical argument, notably found in [Kal15,
Section 5.2] who claims it is the gist of the proof of the localization theorem for Hochschild homology
proven by [Kel98]. A close variant of this argument also appears in [HSS17, Theorem 3.4]. Note
also that we cannot do more than a partial converse, as there are non-additive trace-like functors,
even fiberwise-reduced, for instance (C,M) 7→ THH(C,M)⊗n.

Theorem 5.33 Let F : TCatEx → E be a fiberwise-exact functor with target a stable category.
Then, the following are equivalent:

(i) F is laced-additive

(ii) F is trace-like

In particular, THH is laced-additive.

Proof. Proposition 5.31 gives the first implication since fiberwise-exact functors are in particular
fiberwise-reduced. Suppose F is trace-like and exact on each fiber, and let there be an orthogonal
decomposition ((A, N); (B, P )) of (C,M) with i : A → C and j : B → C denoting the inclusions.

Denote q the right adjoint of i; Lemma 5.14 applied to the bimodule M ◦ (idop × i) and the
aforementioned adjunction gives a trace-equivalence

(A,M ◦ (iop × i)) (C,M ◦ (idop × iq))

whose underlying exact functor is the inclusion. Since α : N ≃ M ◦ (iop × i), the map (A, N) →
(C,M) factors as follows:

(A, N) (C,M ◦ (idop × iq)) (C,M)
(id,α̂)

where the first map has been previously described and the natural transformation

α̂ : M ◦ (idop × iq) =⇒ M

is induced by the counit iq → id and makes the wanted triangle commute thanks to the triangle
identities of the adjunction. We have a dual factorization involving N ◦ (idop × jp) where p is the
right adjoint to j; but since we have a exact sequence iq → id→ jp as the underlying sequence is
a semi-orthogonal decomposition, this means we have a diagram as follows:

(A, N) (C, N) (B, P )

(C, N ◦ (idop × iq′)) (C, N) (C, N ◦ (idop × j′p))

(i,α)

(i,id)

(p,η)

(id,α̂) (id,β̂′)

(p,id)

where the bottom horizontal sequence is a (split-)exact sequence of TCCatEx and the vertical maps
are trace equivalences. Since F is exact on each fiber and inverts trace equivalences, it follows that
the top row is also sent to an exact sequence, which concludes.

In particular, we deduce from the above that THH is additive, and actually, the universal
fiberwise-exact additive invariant under Σ∞

+ Lace≃ → THH. From Theorem 4.10, we deduce the
following:
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Corollary 5.34 — Stable K-theory is THH. The canonical natural transformation Klace → THH
exhibits its target as the initial fiberwise-exact functor under the source. In particular, on
the fiber over each stable C, the first Goodwillie derivative of the functor K(Lace(C,−)) is
THH(C,−).

This generalizes the main result of [DM94] to stable categories C which are not Perf(R) for
some connective ring spectrum R; but note how we never quite needed any specific constructions
of our objects — the only constructions of THH given were to show the well-known construction
coincided with the object with the correct universal property, in particular if one were to adopt a
definition of THH similar in style to our definition of K-theory, the above is almost purely formal.

We also note that in his thesis [Ram24b], Ramzi has independantly and simultaneously shown
a version of above statement, although with yet another proof, which makes use of the category
THHΛ(CatEx), or Λst in his notations. Further sections of this manuscript will compare the two
approaches.

Remark 5.35 Note that in Proposition 5.30, we have shown generally that Pfbw
1 preserves lax-

monoidal functors, hence the canonical natural transformation

Klace −→ Pfbw
1 Klace ≃ THH

is a natural transformation of lax-monoidal functors, i.e. a map of algebra objects in the functor
category.

6 Higher derivative of laced Verdier-localizing invariants
This section and the next present material related to the paper [HNS25]. This paper is long,

technical and has multiple companion papers (or at least, is planned to at the time of writing).
We have thus made the following choice of presentation: this section deals with presenting an
original exposition of the material, which aims to be shorter but therefore will need to cut corners
and avoid dealing with some of the coherence problems. In particular this section does not offer
complete, publishable proofs of all the results it states (but it does for many).

In constrast, section 7 is purely a collection of selected useful statements of loc. cit., given
without proofs. They all imply the major statements of this section and have their proof in the
aforementioned paper. Our hope is that the reader will find in this perilous act of balancing both
a legible and a complete picture of the results.

6.1 Fiberwise Goodwillie calculus
In previous sections, we have shown that for every functor F : TCatEx → E , where E is stable

with sequential colimits, there exists an initial F → Pfbw
1 F with target a functor such that for

each C, Pfbw
1 F (C,−) is exact. We coined the term fiberwise-exact functors. Moreover, if F is

fiberwise-reduced, i.e. F (C, 0) ≃ 0 for every C, then we have the usual classical formula:
Pfbw

1 F (C,M) ≃ colim
n

ΩnF (C,ΣnM)

We want now to introduce the higher polynomial approximations in the fiberwise setting. Recall
from Chapter 6 of [Lur17a] the following notions of Goodwillie calculus: a strongly cocartesian
n-cube is a functor X : P([n])→ C, where P([n]) is the poset of subsets of [n] ordered by inclusion,
which is left Kan extended from its restriction to subsets of size ≤ 1. A reduced functor is said to
be n-excisive if it carries strongly cocartesian n-cubes to cartesian cubes.

We will adopt the following terminology: a fiberwise strongly cocartesian n-cube is a strongly
cocartesian cube with target TCCatEx for some stable C.

Definition 6.1 Let n ∈ N∗, a functor F : TCatEx → E is said to be fiberwise n-excisive if
for every C, F (C,−) : TCCatEx → E is n-excisive, i.e. sends strongly cocartesian n-cubes to
cartesian cubes.

In ordinary Goodwillie calculus, [Lur17a, Lemma 6.1.1.33] guarantees that for every functor
F : C → D to a stable category with sequential colimits, there is an initial natural transformation
F → PnF whose target is n-excisive and source is F . We have a similar fiberwise result:
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Theorem 6.2 Let F : TCatEx → E be a functor to a stable category with sequential colimits.
Then, there exists an initial natural transformation F → Pfbw

n F with target a fiberwise n-excisive
functor. Moreover, if FC denotes the restriction of F to some fiber TCCatEx, then

Pfbw
n F (C,M) ≃ Pn(FC)(M)

where Pn denotes the usual n-excisive approximation.

Proof. We argue just as in the Lemmas 5.25 and 5.26, using [Lur17a, Lemma 6.1.1.33] for the
existence on each fiber.

As for ordinary Goodwillie calculus, we can define fiberwise n-homogenenous functors as those
n-excisive functors F such that Pfbw

n−1F ≃ 0. The fiberwise n-homogeneous part Dfbw
n F of a functor

F is then given by the fiber of the natural transformation Pfbw
n F → Pfbw

n−1F . It is in particular
n-homogeneous because Pfbw

n−1 commutes with fibers. The above theorem implies that

Dfbw
n F (C,M) ≃ Dn(FC)(M)

where Dn(G) := fib(PnG → Pn−1G). Recall that in ordinary Goodwillie calculus, Dn(G) can be
computed via the nth-cross effect. Namely, if G : C → D is a functor, then crn(G) is the initial
functor C×n → D receiving a natural transformation from G(X1 ⊕ ...Xn) which is reduced in each
variable.

The map G(X1 ⊕ ...Xn) → crn(G)(X1, ..., Xn) is a split-projection; note also that since G is
symmetric in all the variables, the nth-cross effect factors through (C×n)hΣn . We write cr(n) :
(C×n)hΣn → D for the induced functor.

For such functors in many variables, we can successively in each variable (and thanks to the
symmetry, independantly of the order) linearize. If G : C×n → D is any functor, there is an initial

G −→ P1,...,1G

whose target is 1-excisive in every variable. In fact, more generally if m⃗ := (m1, ...,mn) is a tuple
of natural integers, we can consider Pm⃗G which receives the initial natural transformation out of
G which is mi-excisive in the variable i. In [Lur17a, Theorem 6.1.4.7, Proposition 6.1.4.14], Lurie
shows that

(P1,...,1cr(n)G)(X, ...,X)hΣn ≃ Dn(G)(X)

a result known as the classification of n-homogenenous functors. Here the Σn-action on the diagonal
is a consequence of the factorization through (C×n)hΣn .

In our setting, this idea still applies and gives rises to the following result:

Corollary 6.3 Let F : TCatEx → E be a fiberwise-reduced functor. Then, we have an equivalence

Dfbw
n F (C,M) ≃ (P1,...,1cr(n)FC)(M, ...,M)hΣn

where cr(n) denotes the (ordinary) nth-cross effect and P1,...,1 the first approximation in each
of the n variables.

6.2 Cyclic invariance in the tangent bundle
The goal of this section is to build towards computation of higher derivatives of Klace. Note

that, just like the next part, we will not end up using material of this section for latter purposes,
but we present here as a way to show what can be done by staying within TCatEx.

The main obstruction to implementing trace-invariance is the fact that given M a (D, C)-
bimodule and N a a (C,D)-bimodule, there is no laced functor between (C, N⊗DM) and (D,M⊗C
N). To circumvent this issue, we will build an intermediate laced category which maps to both.
Its underlying stable category is the following:

Definition 6.4 Let C,D be stable categories and M a (D, C)-bimodule. We denote Pair(C,D,M)
the category Lace(C×D, 0×M), i.e. the category given by the lax-equalizer of jC×D and 0×M ,
where M is viewed as a functor C → IndD.
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There are two functors pC : Pair(C,D,M)→ C and pD : Pair(C,D,M)→ D. We want to refine
those to laced functors. For this, let us first investigate what bimodules on Pair(C,D,M).

Lemma 6.5 The category Ind Pair(C,D,M) is the lax-equalizer of the endofunctors of Ind C ×
IndD given by id and 0×M .

Proof. Remark that the projection Pair(C,D,M)→ C admits a left adjoint, given by sending X
to (X, 0, 0 : 0→M(X)). This left adjoint is fully-faithful and every object (X,Y, f : Y →M(X))
therefore fits in an exact sequence

(X, 0, 0) (X,Y, f : Y →M(X)) (0, Y, 0 : Y → 0)

The second term (0, Y, 0 : Y → 0) is the image of the fully-faithful right adjoint of the other
projection Pair(C,D,M) → D. In particular, we see that Pair(C,D,M) is a semi-orthogonal
decomposition of C and D.

Therefore, we get that Ind Pair(C,D,M) is a stable recollement of Ind C and IndD which is
classified by the gluing functor Ind(M) : Ind C → IndD. It now suffices to check that the claimed
lax-equalizer is also this stable recollement, which follows from the previous argument mutatis
mutandis combined with the remark that the existence of an extra (right) adjoint for the projection
to Ind C is a consequence of the stability of PrL

Ex under pullbacks of categories.

Remark 6.6 The similar statement does not hold for Lace: it is not true that Ind Lace is the
lax-equalizer of id and M : Ind(C) → Ind(C). Here it is essential that the bimodule is of the
form 0×M .

Proposition 6.7 If C,D are stable categories M a (D, C)-bimodule and N a (C,D)-bimodule,
there is a laced category (Pair(C,D,M), N̂) where N̂ is the Pair(C,D,M)-bimodule given in
formula by

Pair(C,D,M) −→ Ind Pair(C,D,M)
(X,Y, Y →M(X)) 7−→ (N(Y ),MN(Y ), id)

Proof. We claim there is a well-defined exact functor D → Ind Pair(C,D,M) which gives the
wanted N̂ by precomposing by pD. By Lemma 6.5, it suffices to produce a commutative diagram
of exact functors

D Ar(Ind C)×Ar(IndD)

Ind C × IndD (Ind C × IndD)2(j,0×M)

The vertical left functor is given by the pair (N,M ◦N) whereas the horizontal top functor is given
by (0, idM◦N ). The diagram is easily checked to commute, and this gives N̂ which satisfies the
wanted formula.

Proposition 6.8 There is a laced functor

(pD, α) : (Pair(C,D,M), N̂) −→ (D,M ◦N)

Moreover, this functor is a trace equivalence.

Proof. Given the explicit description of N̂ , we can take the natural transformation α to be the
identity on the D-component (and necessarily zero elsewhere), and we have built the underlying
functor of stable categories already.

For the second part, remark that Ind(pD)N̂LD ≃M ◦N whereas N̂ ≃ N̂LDpD hence if we let
P := N̂LD, the situation is exactly (up to translating to the one variable context) that of Lemma
5.14.

In general, however, it does not hold that the other laced functor (Pair(C,D,M), N̂) −→

57



(C, N ◦M) is a trace equivalence, and the situation is as follows:

(Pair(C,D,M), N̂)

(C, N ◦M) (D,M ◦N)

(Pair(D, C, N), M̂)

≃

≃

(⋆)

where we labeled the edges which are trace-equivalences (the other two are not).
Of course, there are more complicated diagrams that appear for cyclic graphs of order n ≥ 2

of categories and bimodules between them, and those are necessary for the higher coherence data.
Since the goal of this section of the manuscript is not to redo what is done in the fully-coherent
manner in [HNS25], we will never write those higher diagrams and only suggest them. In particular,
we stress that the arguments of this section should be thought of as explaining what is happening
under the hood in loc. cit. than trying to prove those results.

Definition 6.9 A functor F : TCatEx → E is said to be invariant under cyclic permutations if
it sends every arrow of the above square to an equivalence, and the higher coherence diagrams
we did not write as well.

If F is invariant under cyclic permutations, there are two equivalences F (C, N ◦M) ≃−→ F (D,M ◦
N). In particular, if M is a C-bimodule, then F (C,M ◦M) admits a C2-action and more generally,
F (C,M⊗n) admits an action by Cn, the cyclic group with n elements.

We now seek to exhibit trace-like functors which are invariant under cyclic permutations. For
those, it remains to study the other leg of the span, which we do now.

Lemma 6.10 There is an equivalence Lace(Pair(C,D,M), N̂) ≃ Lace(C ×D,M ×N). Moreover,
the induced functor

Lace(C × D,M ×N)→ Lace(C,M ◦N)

is a Verdier projection with kernel D.

Proof. The equivalence of Lace categories amounts to the following observation: objects in the
left hand side are of the form (X,Y, f : Y →M(X)) and maps (g : X → N(Y ), h : Y →MN(Y ))
as well as a homotopy showing that h ≃ g ◦ f , but the datum of both h and such a homotopy is
canonical up to a contractible choice, so it can be removed without any loss.

For the second part, consider the following commutative diagram:

Lace(C × D,M ×N) Lace(C,M ◦N)

Lace(D, N ◦M) Lace(Ind C × D,M ×N) Lace(Ind C,M ◦N)

Lace(IndD, N ◦M) Lace(Ind C × IndD,M ×N)

pC

pD

q

where we indiscriminately wrote M for the exact functor C → IndD or Ind C → IndD (and same
for N). It is easy to check that both squares are pullback squares and that every vertical map is
fully-faithful. Moreover, one can check that the right adjoint to q is given in formula by

(Y, f : X → NM(Y )) 7−→ (N(Y ), Y, idN(Y ), f)

This right adjoint is fully-faithful: the hard part is checking that any map N(Y )→ N(Y ′) comes
from the map from Y → Y ′, but this follows from the commutative diagram which involves idN(Y )
and idN(Y ′), also provided as part of the maps. In particular, q is a Verdier projection. Since
Verdier projections are stable under pullbacks, the functor

Lace(Ind C × D,M ×N)→ Lace(D, N ◦M)
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is also a Verdier projection. Its fiber is the full subcategory of Lace(Ind C × D,M × N) spanned
by tuples (X,Y, Y → M(X), X → N(Y )) where Y ≃ 0 and the composite Y → NM(Y ) is
nullhomotopic. Of course, the second condition is implied by the first which also implies that both
Y → M(X) and X → N(Y ) are zero maps; hence the subcategory in question is equivalent to
Ind C, so that we have a commutative diagram

C Lace(C × D,M ×N) Lace(D, N ◦M)

Ind C Lace(Ind C × D,M ×N) Lace(D, N ◦M)

where the bottom sequence is a fiber-cofiber sequence. The same argument as above shows that the
top sequence is a fiber sequence, and clearly, the left hand square is a pullback square. In particular,
this implies that the cofiber of the top map in CatEx is some full subcategory of Lace(D, N ◦M)
which is characterized as being the essential image of the composite

Lace(C × D,M ×N)→ Lace(Ind C × D,M ×N)→ Lace(D, N ◦M)

This composite is essentially surjective, hence the wanted map is a Verdier projection.

Remark 6.11 In fact, we could have shown slightly more: the laced functor dual to the one of
Proposition 6.8

(pC , β) : (Pair(C,D,M), N̂) (C,M ◦N)

is a fine Verdier projection as in Definition 4.15 whose kernel is (D, 0). In the previous Lemma,
we have only dealt with the condition on Lace (technically for n = 1, but the cases n ≥ 2 also
follow) and to get the full claim, one need to check that pPair(C,D,M) → C is a localization
with kernel D (this already features in the proof of Lemma 6.5), that N̂ vanishes when restricted
to this kernel and that β exhibits M ◦N as left Kan extended from N̂ along pC .

Since the proof is invariant under switching the roles of M and N , this means that every
fiberwise-reduced, weakly-laced Verdier localizing invariant is also invariant under cyclic per-
mutations. As in Theorem 5.33, the converse will holds under the stronger assumption that the
functors in question are fiberwise-exact.

Combining the previous lemma with Proposition 6.8, we get many examples of functors invari-
ant under cyclic permutations. Let us first introduce a bit of notation:

Definition 6.12 Let F : CatEx → E be an additive invariant. We write F cyc for the (split) fiber
of the map F (Lace(C,M))→ F (C).

In particular, F cyc coincides with (F lace)red, where the superscript was introduced in Lemma
5.25. Since F cyc is also additive, it is trace-like and by Corollary 5.32, we also have F cyc ≃
cyc(F lace). We now argue that there is more trace-invariance when F is Verdier-localizing.

Theorem 6.13 Let F : CatEx → E be a Verdier-localizing invariant. Then, F cyc and Pfbw
1 F cyc

are invariant under cyclic permutations.

Proof. Since F cyc and Pfbw
1 F cyc additive and fiberwise-reduced, it is also trace-like by Propo-

sition 5.31. Therefore we only focus on the non-labeled arrows in (⋆). We have a commutative
diagram

D Lace(C × D,M ×N) Lace(C,M ◦N)

D C ×D C

with rows Verdier sequences by Lemma 6.10. Applying F and then taking vertical fibers implies
that F cyc sends the non-labeled maps in the square (⋆) to equivalences. Now notice that the square
(⋆) is stable under suspension in the bimodule coordinate, i.e. the operation of F 7→ F (−,Σ(−))
shifting in the fiber preserves functors invariant under cyclic permutations. The claim about Pfbw

1
now readily follows from the explicit formula recalled at the beginning of section 6.
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In particular, since K-theory is Verdier-localizing and the first derivative of laced K-theory is
THH by Theorem 5.34, we get immediately:

Corollary 6.14 Cyclic K-theory Kcyc, the (split) fiber of the map Klace(C,M)→ K(C), is invariant
under cyclic permutations.

Corollary 6.15 The functor THH : TCatEx → Sp is invariant under cyclic permutations.

6.3 A low-tech computation of homogeneous parts
In this section, we present the furthest we are able to go in the trace-method story while staying

in the confines of TCatEx. We will not need the results in this section, as they will be superseded
by further development but we thought worthwhile to include it, as it presents some of the results
in a less technical way.

The goal of this section is to compute Dfbw
n Klace and more generally, Dfbw

n F lace the fiberwise n-
homogeneous part of a laced invariant. For this, we want to use Corollary 6.3 and identify instead
the derivative in each variable of the n-cross effect. Let us begin by the following lemma:

Lemma 6.16 Let C be a stable category and M,N two C-bimodules. There is an equivalence

Lace(C,M ⊕N) ≃ Lace(Lace(C,M), Ñ)

where Ñ is the Lace(C,M)-bimodule obtained by pulling N along p : Lace(C,M)→ C.

Proof. Let C be a stable category and M,N two C-bimodules. We claim the canonical map
p : Lace(C,M)→ C upgrades to a laced functor

(Lace(C,M), Ñ)→ (C,M ⊕N)

For this, it suffices to supply a natural transformation

Ñ ≃ N ◦ (pop × p) −→ (M ⊕N) ◦ (pop × p)

and using that composition distributes, we take the canonical map of the coproduct.

A point in Lace(C,M ⊕ N) is the datum of an object X ∈ C and two maps S → M(X,X)
and S → N(X,X). Of course, we can repackage this as an object X̂ := (X,S → M(X,X)) in
Lace(C,M) and a map S → Ñ(X̂, X̂) where Ñ(X̂, X̂) := N(X,X). Writing this argument more
properly shows that the laced functor we built induces an equivalence on Lace, which concludes.

We will also need the following statement, a weaker version we already proved in Lemma 5.23.

Lemma 6.17 Let C be a pointed, presentable category. Then, the functor Σ∞Ω∞ : Sp(C)→ Sp(C)
has first Goodwillie derivative idSp(C).

Proof. The counit of the adjunction furnishes a map η : Σ∞Ω∞ → id, and for every exact F , a
commutative square

Nat(id, F ) Nat(Ω∞,Ω∞F )

Nat(Σ∞Ω∞, F ) Nat(Ω∞,Ω∞F )

Ω∞

η∗ =

≃

The top horizontal arrow is an equivalence since (Ω∞)∗ is fully-faithful as a functor with source
FunEx(D,Sp(C)), hence so is η.

If F : CatEx → Sp is a Verdier-localizing invariant, then, F cyc is also invariant under cyclic
permutations by Theorem 6.13. In consequence, there is a map

F cyc(C,M) −→ F cyc(C,M⊗n)hCn
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Indeed, we have a Cn-equivariant diagonal map (C,M)→ (Cn,Mn) in TCatEx and by 6.10, F cyc

applied to the latter is equivalent to F cyc(C,M⊗n) and this is a Cn-equivariant equivalence.
It follows that the above induces a map

F cyc(C,M) −→ Pfbw
1 F cyc(C,M⊗n)hCn

but the right hand side is n-excisive, so this map factors through the nth-derivative. In fact, we
have a commutative square as follows:

Pfbw
n F cyc(C,M) Pfbw

1 F cyc(C,M⊗n)hCn

Pfbw
n−1F

cyc(C,M) Pfbw
1 F cyc(C,M⊗n)tCn

(KMc□)

where the bottom vertical map follows from the fact that Pfbw
1 F cyc(C,M⊗n)tCn is at worst (n−1)-

excisive. Regarding this last fact, let us indicate that in Lemma 6.22, we will prove in fact that
if n is prime, then this functor is 1-excisive; the general proof can be extracted from the same
observations.

The main result of this section is the fact that when F is finitary i.e. commutes with filtered
colimits, this square is cartesian. In fact, we will only need that the derivative Pfbw

1 F lace commutes
with fiberwise filtered colimits.

We view this result as some version of [McC01, Proposition 4] or [Kuh04, Lemma 5.2, Propo-
sition 1.9], what we call the Kuhn-McCarthy square of Goodwillie calculus, which is the lesser
known counterpart of say [Lur17a, Proposition 6.1.4.14] which only computes the common fiber of
the square.

Theorem 6.18 Let F : CatEx → Sp be a finitary Verdier-localizing invariant. Then, the square
(KMc□) is cartesian. In particular, the n-homogeneous part of F is given by

(C,M) 7→ Pfbw
1 F cyc(C,M⊗n)hCn

Sketch of a proof. We will not prove this result completely, though we will get tantalizingly
close. This theorem is nonetheless true and proven completely in the paper [HNS25]; the part of
the proof we are missing is the one which pieces together the coherences of many identifications:
this requires significantly more technology than is reasonable to develop and it also makes the
argument harder to believe (at least to the crowd of mathematicians this write-up is intended for),
because most of the space would be occupied by those coherence questions. Hence, we propose
here an incomplete argument, which gives at least a good reason to believe in the statement.

Let us now tackle the mathematical content. Since the target category of F is stable, it suffices
to show that the induced map on fibers

Dfbw
n F cyc(C,M)→ Pfbw

1 F cyc(C,M)hCn

is an equivalence. Using [Lur17a, 6.1.4.7], it suffices to check that the first derivative in each
variable of the n-cross effect of the above map is an equivalence.

On the right-hand side, a standard computation shows this is the Σn-object freely induced from
the Cn-object Pfbw

1 F cyc(C,M1 ⊗ ...⊗Mn); in symbols, the following:⊕
[f ]∈Σn/Cn

Pfbw
1 F cyc(C,Mf(1) ⊗ ...⊗Mf(n))

where Σn acts by permutation of summands (i.e. by composition on f) for the Σn/Cn-part and
through the Cn-action on each summand.

By Lemma 6.16, we have Lace(C,M ⊕ N) ≃−→ Lace(Lace(C,M), Ñ) where Ñ stands for the
precomposition N ◦ (pop

M × pM ) with pM : Lace(C,M) → C. This means we have the following
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equivalence:

F lace(C,M ⊕N) ≃−→ F lace(Lace(C,M), Ñ)
≃−→ F lace(Lace(C,M), 0)⊕ F cyc(Lace(C,M), Ñ)
≃−→ F lace(C,M)⊕ F cyc(Lace(C,M), Ñ)

In particular, F cyc(C,M ⊕ N) ≃−→ F cyc(C,M) ⊕ F cyc(Lace(C,M), Ñ). We deduce the following
natural splitting:

F cyc(C,M1 ⊕ ...⊕Mn) ≃−→ F cyc(C,M1 ⊕ ..⊕Mn−1)⊕ F cyc(Lace(C,M1 ⊕ ..⊕Mn−1), M̃n)

whose supplementary summand is exactly the reduced cross-effect in the variable Mn. Since M̃n

is linear in Mn, we get that the derivative of the above in said variable is

Pfbw
1 F cyc(Lace(C,M1 ⊕ ...⊕Mn−1), M̃n)

At this point, we are thus reduced to show that there is a map

Pfbw
1 F cyc(Lace(C,M1 ⊕ ...⊕Mn−1), M̃n)→

⊕
[f ]∈Σn/Cn

Pfbw
1 F cyc(C,Mf(1) ⊗ ...⊗Mf(n))

which exhibits its target as the first Goodwillie derivative with respect to M1, ...,Mn−1 of the
source. We now crucially use the fact that Pfbw

1 F cyc is invariant under cyclic permutations, which
we proved in Theorem 6.13.

Remark that under the equivalence FunEx(Cop ⊗ C,Sp) ≃ EndL(Ind C), the bimodule Mn ◦
(pop× p) is equivalently written Ind(p)R ◦Mn ◦ Ind(p) where Ind(p)R is the right adjoint of Ind(p)
and p is the canonical projection Lace(C,M1⊕ ...⊕Mn−1)→ C. Hence, by invariance under cyclic
permutations, we have

Pfbw
1 F cyc(Lace(C,M1 ⊕ ...⊕Mn−1), M̃n) ≃−→ Pfbw

1 F cyc(C,Mn ◦ Ind(p) ◦ Ind(p)R)

Since F cyc(C,−) is finitary so is Pfbw
1 F cyc(C,−). In particular, it commutes with taking derivatives

— i.e. we can apply the so-called chain rule — so that we are reduced to take the derivative of
Ind(p) ◦ Ind(p)R in M1, ...,Mi and check it is given by:⊕

f∈Σn−1

Mf(1) ◦ ... ◦Mf(n−1)

Note that the case n = 1 is Lemma 6.17 where the category being stabilized is CatEx
/C ; indeed, we

have already seen in Proposition 3.11 that M 7→ (pop × p)! mapLace(C,M) is equivalent to the com-
posite Σ∞Ω∞ and tracking this formula along the equivalence FunEx(Cop ⊗ C,Sp) ≃ EndL(Ind C)
concludes.

We explain the case n = 2 for the sake of sanity (of both the reader and the writer). Denote
pi : Lace(C,Mi) → C for i = 1, 2 and p12 : Lace(C,M1 ⊕ M2) → Lace(C,M1) the canonical
projections; since Lace preserves pullback the map Lace(C,M1⊕M2)→ C factors as p1 ◦ p12 hence
the expression we are trying to derivative in both variables is given by:

Σ∞Ω∞(M1 ⊕M2) ≃ Ind(p1) ◦ Ind(p12) ◦ Ind(p12)R ◦ Ind(p1)R

By Lemma 6.16, we have:

Lace(C,M1 ⊕M2) ≃ Lace(Lace(C,M1), Ind(p1)R ◦M2 ◦ Ind(p1))

Hence, Ind(p1)R ◦M2 ◦ Ind(p1) is the derivative in the variable M2 of Ind(p12) ◦ Ind(p12)R. Hence,
it remains to take the derivative of Ind(p1) ◦ Ind(p1)R ◦M2 ◦ Ind(p1) ◦ Ind(p1)R in the variable M1.
Another instance of Lemma 6.17 shows that Ind(p1) ◦ Ind(p1)R has M1 as its derivative; note also
that it is not reduced in M1 but and that the constant term is precisely id. In consequence, after
linearizing, the expression we pick up is:

(M1 ◦M2 ◦ id)⊕ (id ◦M2 ◦M1)
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which is the wanted expression when there are two bimodules.

This affords a computation of the derivatives, but not quite that the square we wanted is
cartesian. For this, it would suffice to show that the following square commutes naturally in M :

Pfbw
1 F cyc(Lace(C,M), Ñ) Pfbw

1 F cyc(C, N ◦ Ind(p) ◦ Ind(p)R)

Pfbw
1 F cyc(C,M ⊕N) Pfbw

1 F cyc(C, (M ⊕N)◦2)hC2 Pfbw
1 F cyc(C, N ◦M)

≃

≃

Note that this is less obvious than it may seem, as most of the those maps do not exist before
applying F cyc or even Pfbw

1 F cyc, but they arise as the inverses of maps who exist. We will not
prove this.

Remark 6.19 It follows from Theorem 6.18 that for Verdier-localizing F : CatEx → Sp, the first
Goodwillie derivative F lace controls the whole Taylor tower, i.e. if η : F =⇒ G is a natural
transformation between such Verdier-localizing functors which induces an equivalence of first
Goodwillie derivatives of the laced invariants, then it must also induce an equivalence of the
whole Taylor tower.

The functor Klace factors through Lace by construction and by Corollary 6.15 its derivative
THH is invariant under cyclic permutation (in fact, this is already the case of Kcyc, as we have
shown). Hence Theorem 6.18 applies and we have:

Corollary 6.20 The n-homogenous part Dn Klace of laced K-theory is THH(C,M⊗n)hCn

This generalizes a result of Lindenstrauss-McCarthy [LM12] when C = Perf(R) of a discrete
ring R, which was generalized by Pancia in his thesis to connective ring spectra [Pan14].

6.4 The low-tech polygonic and cyclotomic structures on THH
If F : CatEx → Sp is Verdier localizing, then, as mentioned in Remark 6.19, the first Goodwillie

derivative controls the whole Taylor tower. The goal of this section is to realize this via a different
perspective: we will show that by considering the F (C,M⊗n) as a family, the first Goodwillie
derivative acquires extra structure, which we call a genuine polygonic structure, i.e. lifts to a
category GenPgc(E) with a conservative map back to

∏
n E . Moreover, we want to explain why

this structure is precisely what is needed to completely recover the whole Taylor tower.
When restricting to bimodules of the form idC , this structure refines to that of genuine cyclo-

tomic objects of E . To make this precise and rigorous would require even more technology, and
since we have already given up on this, we make this section "low-tech" and only sketch the key
ingredients that would be required to build the structure.

Our starting point is to remark that there is a degree k map as follows:

degk : Lace(C1 × ...× Cn, (M1, ...,Mn)) Lace((C1 × ...× Cn)×k, (M1, ...,Mn)×k)

which is induced by the k-fold diagonal. In particular, the right hand side has a Ck-action by
permutation which makes the above map into a Ck-equivariant map if the left hand side is given
the trivial action. By design, this action is compatible with the trace actions so that for instance

degk : Lace(C×n, (M, ...,M)) Lace(C×nk, (M, ...,M)×k)

is Cn × Ck-equivariant. After applying a Verdier-localizing functor and fiberwise reducing, those
products can be turned into tensors (i.e. compositions) as we proved in Lemma 6.10. In particular,
the Cn-equivariant maps

F lace(C×n, (M, ...,M)) F lace(C×nk, (M, ...,M)×k)hCk
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induce after taking reduced approximations Cn-equivariant maps:

ϕn,k : F cyc(C,M⊗n) F cyc(C,M⊗nk)hCk

which are such that ϕn,k(C,M) = ϕ1,k(C,M⊗n) and are natural in the pair (C,M). Here, F cyc is
the name we have coined in Definition 6.12 for the fiberwise-reducification of F lace.

Remark 6.21 The structure on F cyc is a polygonic analogue of the notion of cyclotomic spectra
with Frobenius lifts as introduced in [AN20] (see before Lemma 3.7) except we have a priori
more maps, since k can be not a prime.

Since taking first Goodwillie derivative is functorial, something must happen to those maps
after linearizing. Recall that for X ∈ Sp, the following sequence:

(X⊗n)hΣn
(X⊗n)hΣn (X⊗n)tΣn

exhibits its source as the n-homogeneous part of its middle term (see 4.29 in [Heu15], which
refers to earlier work of [McC01]), and consequently, the right hand side as its (n − 1)-excisive
approximation. When n = p is prime, the right hand side is actually linear by [NS17, Proposition
III.1.1] so in fact is also the first derivative.

We claim this latter fact still holds in the laced world:

Lemma 6.22 Suppose p is prime. Then, the functor M 7→ (Pfbw
1 F )(C,M⊗p)tCp is exact, and it

further is the first Goodwillie derivative of M 7→ (Pfbw
1 F )(C,M⊗p)hCp

Proof. There is an exact sequence, natural in the laced category (C,M):

(Pfbw
1 F )(C,M⊗p)hCp −→ (Pfbw

1 F )(C,M⊗p)hCp −→ (Pfbw
1 F )(C,M⊗p)tCp

We first argue that its target is linear in M ; this is essentially the same argument as in Proposition
III.1.1 of [NS17]: the tensor of bimodule is linear in each variable hence (Pfbw

1 F )(C,M1⊗ ...⊗Mp)
sends colimits in each Mi to colimits: if M1 = ... = Mp and the colimit is finite, then one checks
that all the terms in the colimit have their Cp-action trivially induced unless they are diagonal.
After taking the Tate construction, only the diagonal ones survive hence the result coincide with
taking the colimit outside as wanted.

To get the second claim, it suffices to check that the first map of the above exact sequence
induces an equivalence on p-cross effect, which more or less follows from a similar observation.

Consequently, on first Goodwillie derivatives, the degree n maps yield Cn-equivariant maps:

ψn,p : (Pfbw
1 F )(C,M⊗n) −→ (Pfbw

1 F )(C,M⊗np)tCp

When M = id, remark that F cyc(C, id) can be realized as the following geometric realization:∣∣∣ ... F cyc(C × C, (id, id)) F cyc(C, id)
∣∣∣

This simplicial object is actually underlying a cyclic object in the sense of Connes, so that this geo-
metric realization acquires a S1-action. Since the maps F cyc(C, id)→ F cyc(C, id⊗n) are compatible
with this cyclic realization (i.e. they make the correct diagram commutes and are Cn-equivariant
when needed), they induce S1-equivariant F cyc(C, id)→ F cyc(C, id)hCp so that the previous struc-
ture is indeed that of a cyclotomic spectrum when restricted to (−, id).

When k is not a prime p, the maps also still exists, but what replaces the Tate construction in
this context is the proper Tate construction.

Definition 6.23 Let G be a group. Then, the proper Tate construction is the functor (−)τG :
EBG → E which is the target of the initial natural transformation with source (−)hG and target
a functor that vanishes on all G-objects which are induced from a proper subgroup H.

Such a universal object exists, see for instance [QS22], and folklore tells that it has some
functoriality — we will prove this in a companion paper to [HNS25]. If G = Cp, then there are
no proper subgroups save for {∗} so the proper Tate construction of Cp is just the usual Tate
construction.
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Proposition 6.24 Let F : CatEx → Sp be Verdier-localizing, and n ∈ N, then the functor

M 7→ (Pfbw
1 F cyc)(C,M⊗n)τCn

is exact, where (−)τCn denotes the proper Tate construction. In fact, it coincides with the
exact approximation of M 7→ (Pfbw

1 F cyc)(C,M⊗n)hCn .

Proof. We omit this proof, which is very similar to Lemma 6.22 or the proof of 4.29 in [Heu15],
and refer to the fact that it is proven in [HNS25].

In consequence, via the universal property of the first derivative, the structure maps of the
polygonic object with Frobenius lifts induces Cn-equivariant maps:

ψn,k : (Pfbw
1 F )(C,M⊗n) −→ (Pfbw

1 F )(C,M⊗nk)τCk

which fit in the following commutative diagram:

F (C,M⊗n) F (C,M⊗nk)hCk (Pfbw
1 F )(C,M⊗nk)hCk

(Pfbw
1 F )(C,M⊗n) (Pfbw

1 F )(C,M⊗nk)τCk

ϕn,k

ψn,k

We would like to formalizing this structure, and it is reasonable to expect that it would come in fact
from a genuine version of polygonic spectra. Here, we use genuine in a corrupted sense, meaning
that eventually, the structure we introduce will be equivalent to genuine construction which have
already been proved but we will personally never work in the genuine equivariant world, especially
in the context of this work which will not touch this comparison.

Let us first recall the non-genuine definitions of [KMN23]; it will be convenient to have the
same flavors as in loc. cit. so we introduce as well the following definition:

Definition 6.25 A truncation set T is a subset of N≥1 such that xy ∈ T implies x ∈ T and y ∈ T .

Definition 6.26 — Definition 2.6 of [KMN23]. Let C be a presentable stable category. The category
PgcT (C) of T -polygonic objects in C is given by the following lax-equalizer

LEq
(∏

n∈T CBCn
∏
p

∏
k∈T/p CBCk

)
where the top map is the identity on each component and the second map takes the p-Tate
construction on each component. If T = N≥1, we write simply Pgc(C).

In particular, objects of PgcT (C) can be described as a collection Xn ∈ CBCn for each n ∈ T
with maps ϕp,n : Xn −→ X

tCp
np whenever np ∈ T .

General results on lax-equalizers (see [NS17, Proposition II.1.5]) imply the following:

Proposition 6.27 The category PgcT (C) is presentable stable, and for n ∈ T , the functors
PgcT (C)→ CBCn are colimit-preserving.

There is a functor triv : C → PgcT (C) which can be informally described as sending X to the
tuple of (X) where X is viewed with the trivial Cn-action in CBCn , n ∈ T , and equipped with the
canonical maps X → XhCp → XtCp that exists because the action on X is trivial.

Definition 6.28 We write TRT for the functor PgcT (Sp) → Sp given by map(Striv,−). This is
the right adjoint to triv. If T = N≥1, then we write simply TR.

There is a functor i : Cyc(Sp)→ Pgc(Sp), where on the left hand side we denote the category
of cyclotomic spectra as in [NS17], which can be informally described forgetting from the S1-action
down to Cn-actions everywhere — the details are spelled out in Construction 2.16 of [KMN23].
The following is proven in the same section of loc. cit.:
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Lemma 6.29 The functor i : Cyc(Sp)→ Pgc(Sp) admits a right adjoint, denoted R : Pgc(Sp)→
Cyc(Sp). Moreover, since triv factors through i, we have an equivalence TR ≃ TC ◦R.

In the previous sections, we have worked enough to get the following:

Theorem 6.30 Let F : CatEx → E be Verdier-localizing, then the functor Pfbw
1 F cyc : TCatEx →

E admits a canonical lift to Pgc(E) which refines to a cyclotomic structure when restricted to
objects of the form (C, id). Moreover, the canonical map

F cyc −→ Pfbw
1 F cyc

is a map of polygonic spectra when the left hand side is endowed with its polygonic structure
with Frobenius lifts.

In particular, there is a well-defined functor THH : TCatEx → PgcSp which recovers the
usual cyclotomic structure on THH(C) for C a stable category, as well as functors TC : CatEx →
Sp and TR : TCatEx → Sp receiving natural transformations from respectively K and Klace.

Proof. We have seen in Theorem 6.18 how to provide a cyclic action on (Pfbw
1 F lace)(C,M⊗n)

(see also the remark below); we also have provided the structure maps

ψn,p : (Pfbw
1 F )(C,M⊗n) −→ (Pfbw

1 F )(C,M⊗np)tCp

hence the first claim. When M = id, the cyclic actions come from a common S1-action because the
Bar construction that defines cyc (see Proposition 5.20 and remark that every trace-like invariant
F satisfies F ≃ cyc(F )) is actually underlying a cyclic object, and since the maps are compatible
with this geometric realization, they also become S1-equivariant.

Finally, the trivial polygonic structure was built with maps to the Tate factoring through
homotopy fixed points; hence the natural transformation F lace → (Pfbw

1 F ) makes the wanted
squares commute.

Remark 6.31 Starting from Proposition 6.24, we have made the choice of trying to understand
what structure survives the linearization process. In an other direction, note that

(Pfbw
1 F )(C,M⊗n)hCn

is n-excisive so that the higher excisive approximations (or more precisely, the actual Ind-
object Pfbw

• F ) acquires more structure. This induces the structure of a polygonic spectrum
with Frobenius lifts on the limit Pfbw

∞ F .

Unfortunately, the polygonic structure on the derivative is not enough information to recover
the whole Taylor tower in general, though it gets rather close. If the underlying spectra of Pfbw

1
are all bounded-below, then we will show in the companion paper to [HNS25] that this is enough
to recover the limit of the Taylor tower by taking TR and more generally, Pfbw

n F lace is given by
TR[n], where [n] is the truncation set {1, ..., n}.

There is however a refinement of this structure which carries all of the information, and that we
call the genuine polygonic structure. The genuine version PgcgenT (C) of polygonic objects is a version
of this construction which refines the maps to have target as the proper Tate constructions, as well
as having genuine actions on every Xi. Unfortunately, already with the proper Tate construction,
this is harder to build because we also want to have compatibility data between the proper Tate
construction for say n ∈ T and k | n, hence a lax-equalizer does not suffice.

We have made the choice in this section to avoid such compatibility issues. Hence, we will not
define this genuine refinement here. We will state formally all of the relevant statements in the
next section.

7 The structure of THH of the bicategory CatEx

This section is the factual counterpart of the previous section. Here we collect all the main
results proven in [HNS25], although we systematically omit proofs.
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To prove the following results, one key idea is to categorify the problem: we will build a category
out of TCatEx that implements the wanted action on (C,M⊗n) (or more precisely a lax-version
thereof) and a further category where the polygonic maps exist. To construct this category, we
imitate the construction of THH in a categorified world. This resembles, but does not quite coincide
with the theory of shadows of [PS13] even in its higher-categorical version of [HR23]; instead we
follow ideas proposed by Thomas Nikolaus in [Nik18] and continued in [Ram24b, Ram24a]. We
also note that in loc. cit., Maxime Ramzi has announced that he could compare the two theories
(in a suitable sense), so we are not worried about the differences.

7.1 Simplicial, cyclic and epicyclic tangent bundles
We built TCatEx as the unstraightening of the functor sending C to its category of C-bimodules.

In a situation where we want to deal with more than one bimodule, the following is a natural
generalization:

Definition 7.1 Let n ∈ N, then we define ΛnCatEx to be the category obtained by unstraight-
ening the contravariant functor given by:

(CatEx)n+1 −→CAT

(C0, ..., Cn) 7−→
∏

i∈Z/(n+1)Z

FunEx(Ci+1
op ⊗ Ci,Sp)

with functoriality induced by restriction. It comes with a cartesian fibration ΛnCatEx →
(CatEx)n+1 which happens to also be cocartesian, and cocartesian transitions functors induced
by left Kan extension.

For n = 0, we thus recover precisely TCatEx. Generally, an object of ΛnCatEx can be thought
as a marked cyclic graph with n+1 vertices (C0, ..., Cn), the marking corresponding to choosing who
is the zeroth vertex, and arrows given by bimodules Mi : Ci → Ind(Ci+1). Arrows of ΛnCatEx are
given by functors Ci → Di and some lax-commutative squares similar to the situation of Remark
3.17.

There is extra structure relating the different ΛnCatEx, namely composing bimodules or adding
Yoneda embeddings within graphs, which yields the following extra structure:

Lemma 7.2 The construction [n] 7→ ΛnCatEx refines to a simplicial category. We denote
THH∆(CatEx) its cocartesian unstraightening.

The category THH∆(CatEx) has objects cyclic graphs of n elements, for arbitrary n ∈ N∗. We
remark that unlike TCatEx or even ΛnCatEx, the fibration THH∆(CatEx)→ ∆op is not cartesian
(though there are some cartesian transition functors for some special maps of ∆).

Remark 7.3 Understanding unstraightening as a lax-colimit, THH∆(CatEx) is thus the lax geo-
metric realization of some 2-categorical version of the cyclic Bar construction. In particular, one
should understand THH∆(CatEx) as a 2-categorical version of the bare spectrum THH(C,M).
This is the category denoted Λst∆ in [Ram24b].

We let Λ denote Connes’ cyclic category, see appendices of [NS17, Ram24b] for a modern
treatment (as well as some recollections in [HNS25]). There is a faithful functor δ : ∆→ Λ which
is a bijection on objects (note however that there is a shift in notations and [n]Λ is to be thought
as a graph with n+ 1 vertices), and such that every morphism f ∈ Λ is of the form α ◦ δ(g) with
g a map in ∆ and α an equivalence, corresponding to a rotation of the graph.

Proposition 7.4 The simplicial ∆op → Cat mapping [n] 7→ ΛnCatEx upgrades to a cyclic object,
i.e. a functor Λop → Cat. We denote THHΛ(CatEx) the cocartesian unstraightening of the
latter.

There is a functor THH∆(CatEx) → THHΛ(CatEx) which is a map of cocartesian fibrations;
in fact, the former is pulled from the latter along δop. The category THHΛ(CatEx) allows for extra
freedom: cocartesian transition functors over rotations allow one to rotate cyclic graphs with n
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elements; but since rotations are invertible, this has identified some graphs together. In particular,
in THHΛ(CatEx), graphs with n elements whose every vertex is equivalent to the same category
C and whose elementary edges are the same bimodule M carry a Cn-action. Thus, THHΛ(CatEx)
is a 2-categorical version of THH where we have implemented the cyclic actions on objects of the
form (C,M⊗n)

If THHΛ(CatEx) was truly a THH-kind of construction, then we would expect extra structure
in the form of lax-Tate diagonal, resembling the Cn-equivariant maps

THH(C,Mn)→ THH(C,Mnp)tCp

To do this, we consider a refinement of Λ first introduced by Goodwillie: the epicyclic category Λepi

(see also [McC23] though we note that critically, the claim of Example 2.1.11 that the degree is a
cartesian fibration fails, the corrected claim is and subsequent theory is developed and proved in
[HNS25]) By definition, Λepi is the full subcategory of Cat spanned by the cyclic graph categories
Tn which are pictorially represented by:

1

2

3

i

n

In particular, maps in Λepi induce k-fold covers of the circle upon realization, for some k ≥ 1. We
will say that such a k is the degree of the map in Λepi, and taking degrees upgrades to a functor
deg : Λepi → BN×, i.e. is multiplicative.

There is a functor Λ → Λepi which sends [n]Λ to Tn; this functor is faithful and a bijection
on objects. Maps in the image are precisely the degree 1 maps, i.e. Λ is the fiber of the degree
functor.

Proposition 7.5 The cyclic functor [n] 7→ ΛnCatEx upgrades to an epicyclic object, i.e. a functor
(Λepi)op → Cat. We denote THHepi(CatEx) the cocartesian unstraightening of the latter.

Again, the above implies that the cocartesian fibration THHΛ(CatEx) → Λop is pulled back
from the fibration THHepi(CatEx)→ (Λepi)op. In particular, we have a chain of functors

TCatEx THH∆(CatEx) THHΛ(CatEx) THHepi(CatEx)

Each of those categories is enriched in CatEx and so considering the internal functor category from
the image of (Spfin, id), we define variations of Lace, namely Lace∆, LaceΛ and Laceepi. Those laces
are compatible with the restriction: in particular, any laced-invariant can be canonically promoted
to a functor THHepi(CatEx)→ E .

Definition 7.6 A functor THH∗(CatEx) → E with ∗ ∈ {∆,Λ} is said to be cyclic invariant or
invariant under cyclic permutations if it inverts cocartesian edges. The full subcategory of such
functors will be denoted Funcyc(THH∗(CatEx), E).

Note that we also have a definition of cyclic-invariance in TCatEx in Definition 6.9, we write
similarly Funcyc(TCatEx, E). Our goal is now to compare the differences between the notions of
trace-invariance we have defined. Our first result in this direction in [HNS25] is as follows:

Proposition 7.7 The functor ν∆ : TCatEx → THH∆(CatEx) induces an equivalence for every E :

ν∗
∆ : Funcyc(THH∆(CatEx), E) Funcyc(TCatEx, E)≃

68



In particular, Kcyc and THH canonically lift to the left hand side category.

Remark 7.8 It also holds that ν∆ : TCatEx → THH∆(CatEx) identifies the category of trace-
like functors TCatEx → E with the subcategory of functors THH∆(CatEx) → E which invert
cocartesian edges over surjections of ∆.

Note that the category Funcyc(THH∆(CatEx), E) has more structure:

Lemma 7.9 The category Funcyc(THH∆(CatEx), E) carries a canonical action of S1.

Proof. Recall that Un(F )[coCart−1], the localization of the unstraightening of a functor F at its
cocartesian edges, computes the colimit of a functor F : I → Cat (whereas Un(F ) is a lax version
thereof). In particular, THH∆(CatEx)[coCart−1] carries a canonical S1-action as the geometric
realization of the underlying simplicial object of a cyclic object. Thus, via the equivalence

Funcyc(THH∆(CatEx), E) ≃ Fun(THH∆(CatEx)[coCart−1], E)

we get a canonical S1-action on the left hand side by precomposition.

In fact, for a functor Λop → E , one can show (and we do in [HNS25]) that the colimit of
the cyclic object is given by taking first the colimit of the underlying simplicial object, and then
the colimit of the induced S1-action, i.e. homotopy orbits for this action. The following is now
completely formal:

Proposition 7.10 The functor νΛ : TCatEx → THHΛ(CatEx) induces an equivalence for every
E :

ν∗
Λ : Funcyc(THHΛ(CatEx), E) Funcyc(TCatEx, E)hS1≃

Hence, fixed points under the S1-action precisely corresponds to those invariants where the
two equivalences F (C,M ◦ N) ≃ F (D, N ◦M) are inverse to one another, and similar higher
conditions.

Remark 7.11 It holds that for a Verdier-localizing invariant F : CatEx → E , the fiberwise-
reduction F cyc of its lacing is automatically already a S1-fixed point under the above action.

In essence, this is captured by the first part of Lemma 6.10: the functor Lace canonically
identifies the two size-2 graph categories but this can also be seen by a phenomenon we already
mentioned: Lace lifts to THHΛ(CatEx). In particular, F ◦ Lace admits a canonical extension
to THHΛ such that, as we will see later, trace-invariance is fully-captured by the restriction on
TCatEx, so that forcing trace-invariance commutes with restriction.

In both THH∆(CatEx) and THHΛ(CatEx), there is a fiberwise-linearization operation and they
are compatible with restrictions (i.e. are performed fiberwise). Now, given a Verdier-localizing
invariant F : CatEx → EBS1 , one can build a functor

FΛ−lace : THHΛ(CatEx) Λop ×CatEx BS1 ×CatEx EF

using that |Λop| ≃ BS1 and the LaceΛ already mentioned, for instance in Remark 7.11. The
linearization of FΛ−lace is automatically a trace-invariant functor THHΛ(CatEx) → E and thus
restricts to a fixed point under the S1-action on trace-invariant functors out of TCatEx. Since
the linearization is done fiberwise, this is also ultimately the structure of a S1-fixed point on the
linearization Pfbw

1 F lace : TCatEx → E .

Theorem 7.12 If F : CatEx → EBS1 is Verdier-localizing, then the functor Pfbw
1 F lace canonically

promotes to a functor
Pfbw

1 F lace : THHΛ(CatEx) −→ E
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so that in particular, (Pfbw
1 F lace)(C, id) carries a S1-action. Moreover, the canonical map

F (C) −→ (Pfbw
1 F lace)(C, id)

refines to a S1-equivariant map.

Applied to K with the trivial S1-action, one gets that THH naturally promotes to a functor on
THHΛ(CatEx) and that the usual Dennis trace map is S1-equivariant.

7.2 Polygonic and cyclotomic structure on the first derivative
We now turn to the epicyclic THHepi(CatEx); our first warning is that the story cannot be the

same: we do not want that the cocartesian lifts of the degree k maps get inverted since they are
supposed to model the maps in the polygonic structure, which are not equivalences. Instead, what
we want to enforce is some equivariance, as in the functor degk of the introduction of 6.4.

First, let us give an overview of the category of genuine polygonic objects. We write Orbfin(Z)
for the category of finite Z-orbits whose underlying groupoid is the disjoint union of the BCn.
There is a functor Orbfin(Z) → Λepi which is faithful, a bijection on objects and a map of Λepi is
in the image if and only if it is Kan fibration. We let

GenPgcFr(E) := Fun(Orbfin(Z)op
, E)

be the category of polygonic objects in E with Frobenius lifts. An object X ∈ GenPgcFr(E) contains
in particular the datum of a Cn-object X(n) for every n ≥ 1 as well as Cnk-equivariant maps
X(n) −→ X(nk) where the Ck ≃ Cnk/Cn action on the left is trivial, so that in particular, it gives
rises to Cn-equivariant maps

X(n) −→ X(nk)hCk

which we call the kth Frobenius lift of X(n).

Definition 7.13 A functor THHepi(CatEx) → E is said to be cyclic-invariant if it inverts co-
cartesian edges over degree one maps of Λepi.

Let us introduce the Witt monoid W := S1 ⋊ N× where the action is by rotation; there is a
localization Λepi → BW where we invert precisely the degree 1 maps. The following will be shown
in [HNS25]:

Lemma 7.14 The category Funcyc(THH∆(CatEx), E) carries a canonical oplax Wop-action.

Sketch of proof. The idea is roughly the same as in 7.9, but it is marred by the fact that W
is not a group, hence we have to be careful and work with lax limits/colimits.

Remark that THHepi(CatEx)[deg−1
1 ] is fibered over BWop and that this fibration stays cocarte-

sian. It thus holds that THHepi(CatEx)[deg−1
1 ] is the lax colimit of the functor it classifies, which

is precisely a Wop-action on THH∆(CatEx)[coCart−1].

We will not define the words "oplax action" but let us still say the following: there is a 2-category
Foplax(BWop) which realizes the free oplax construction on BWop, which is dual to the free lax
construction (usually realized by the enveloping algebra construction). An oplax Wop-action on
some category C is a (strong) 2-functor

Foplax(BWop) −→ Cat

with value at the point given by C. Note that in general, BWop → Foplax(BWop) is only an oplax
2-functor so that an oplax Wop-action need not yield an honest Wop-action.

Proposition 7.15 The functor νepi : THH∆(CatEx)→ THHepi(CatEx) induces a functor

ν∗
epi : Funcyc(THHepi(CatEx), E) LaxhW(Funcyc(THH∆(CatEx), E))≃

where the right hand side denotes the lax limit of the 2-functor Foplax(BWop)→ Cat encoding
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the oplax Wop-action of Lemma 7.14. Moreover, we have a conservative:

LaxhWop(Funcyc(THH∆(CatEx), E)) Funcyc(TCatEx,GenPgcFr(E))

In particular, Kcyc lifts to a functor on TCatEx → GenPgcFr(Sp).

The second map of the above theorem is built in a similar manner to the discussion for FΛ−lace

before Theorem 7.12.
It is critical that there is no way in general to fiberwise-linearize in THHepi(CatEx) while

preserving the cyclic-invariance condition (precisely because it involves highly non-exact opera-
tions). However, since we have produced a functor F lace : TCatEx → GenPgcFr(E), we can try to
understand what happens to the extra-structure.

Proposition 7.16 Let E be a presentable stable category. There is a category GenPgc(E) of
genuine polygonic objects fitting in a triangle

GenPgcFr(E) GenPgc(E)

∏
n

EBCn

where the diagonal maps are colimit-preserving and conservative and the horizontal functor is
exact. Moreover, there is a conservative functor

GenPgc(E) Eq
(∏

n

EBCn

∏
k

∏
n

EBCn

)
can

(−)τCk

whose target can informally be described as the category of sequences Xn ∈ EBCn with maps
Xn → XτCk

nk but no higher coherences between the maps.
In particular, when E = Sp, there is a functor GenPgc(Sp)→ PgcSp with target the category

of polygonic spectra of [KMN23] which restricts to an equivalence on bounded-below objects.

The construction of GenPgc(E) can be understood from the perspective of oplax action: it
is the lax limit of some oplax Nop-action on E encoding the relations between the proper Tate
constructions (−)τCn for varying n. This is what makes this approach quite powerful, but we have
to pay a steep cost: develop a theory sturdy enough to talk about oplax actions and their lax limits.

There is a colimit-preserving functor triv : E → GenPgc(E) which endows an object with the
trivial polygonic structure, obtained by composing the trivial polygonic structure with Frobenius
lifts with the top map of the triangle of the previous theorem.

Definition 7.17 We let TR : GenPgc(E)→ E denote the right adjoint to triv.

Specializing to Sp, the above theorem guarantees that TR recovers the usual TR of [KMN23]
for uniformly bounded-below spectra with a polygonic structure.

The key insight is that when linearizing a functor TCatEx → E which lifts to GenPgcFr(E),
the linearization might not land in GenPgcFr(E) but it will stay in the larger GenPgc(E). Pre-
cisely, this is because even if F is fiberwise-exact, F (C,M⊗n)hCn will not be linear but at best
n-excisive. However, F (C,M⊗n)τCn will be so that the whole of the further map to the proper
Tate construction will survive linearization.

Theorem 7.18 Let F : CatEx → E be a Verdier-localizing functor to a stable E . Then, there is
a canonical, functorial lift of Pfbw

1 F lace : TCatEx → E to

Pfbw
1 F lace : TCatEx → GenPgc(E)

Moreover, the natural transformation F lace → Pfbw
1 F lace lifts to a map of functors TCatEx →
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GenPgc(E) where F lace is given the trivial genuine polygonic structure (which is in particular,
a genuine polygonic structure with Frobenius lifts). In consequence, there is a natural transfor-
mation

F lace(C,M) −→ TR((Pfbw
1 F lace)(C,M))

of functors TCatEx → E , which we call the polygonic trace map.

In particular, as a consequence of this result, we get a functor THH : TCatEx → GenPgc(Sp)
valued in genuine polygonic spectra and a factorization of the trace map from laced K-theory to
THH as follows:

Klace(C,M) TR(THH(C,M)) THH(C,M)

When restricted to bounded-below polygonic spectrum, this structure on THH(C,M)) recovers the
one built in [KMN23], but in general our factorization is finer.

Remark 7.19 Note that nowhere do we claim that THH or more generally the first derivative of
a functor of the form F lace lifts to THHepi(CatEx). Indeed, given that their polygonic structure
does not have Frobenius lifts, this would be contradictory with 7.15; this is inline with a previous
comment saying that one cannot linearize cyclic-invariants on the epicyclic bundle.

Let us conclude this section by working out a similar phenomenon as in Proposition 7.10:
we have seen that S1-fixed points cyclic-invariants of THH∆(CatEx) acquire a S1-action on the
diagonal F (C, id). We now investigate the extra-structure granted by the datum of being a lax
Wop-fixed point.

Definition 7.20 We write GenCycFr(E) for the functor category Fun(BWop, E), and we call it
the category of genuine cyclotomic spectra with Frobenius lifts.

Remark that there is a functor GenCycFr(E) → GenPgcFr(E) by precomposing by the functor
Orbfin(Z)op → (Λepi)op → BWop. Moreover, GenCycFr(E) also canonically maps to EBS1 .

Lemma 7.21 There is a functor

LaxhWop(Funcyc(TCatEx, E)) Fun(CatEx,GenCycFr(E))

which is such that the following diagram commutes:

Funcyc(TCatEx,GenPgcFr(E))

LaxhWop(Funcyc(TCatEx, E)) Fun(CatEx,GenPgcFr(E))

Fun(CatEx,GenCycFr(E))

L∗

where the bottom right arrow postcomposes by the functor GenCycFr(E) → GenPgcFr(E) and
L denotes as usual the cotangent complex.

In particular, when evaluated at a laced category of the form (C, id), cyclic K-theory Kcyc(C, id)
enjoys the structure of a genuine cyclotomic spectrum with Frobenius lifts. Let us now describe
what happens to this structure, and more generally the structure of F cyc(C, id) when linearizing.
It will be captured by the category introduced in the following proposition:

Proposition 7.22 Let E be a presentable stable category. There is a category GenCyc(E) of
genuine cyclotomic objects factorizing the canonical map

GenCycFr(E) GenCyc(E) EBS1
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such that the second functor is colimit-preserving and conservative. Moreover, there is a con-
servative functor

GenCyc(E) Eq
(
EBS1 ∏

k

EBS
1
)

can

(−)τCk

whose target can informally be described as the category whose object is X ∈ EBS1 with maps
X → XτCk but no higher coherences between the maps.

Moreover, there is a left adjoint functor GenCyc(E) → GenPgc(E) which fits in a commu-
tative square

GenCycFr(E) GenCyc(E)

GenPgcFr(E) GenPgc(E)

Remark 7.23 When E = Sp, GenCyc(Sp) recovers the usual category of genuine cyclotomic
spectra, as in [NS17]. In particular, on bounded below spectra, it also recovers the low-coherence
model of loc. cit.

There is a left adjoint functor triv : E → GenCyc(E) which endows an object with the trivial
cyclotomic structure.

Definition 7.24 We let TC : GenCyc(E)→ E denote the right adjoint to triv. For bounded-below
spectra with a cyclotomic structure, this recovers the usual TC of [NS17].

We note that if R is the right adjoint to GenCyc(E)→ GenPgc(E), then there is an equivalence

TC ◦R ≃ TR

The final result of this section tells of the interplay between the cyclotomic structure and the
polygonic structure:

Theorem 7.25 Let F : CatEx → E be a Verdier-localizing functor to a stable E . Then, there
exists a dotted arrow such that lift Pfbw

1 F lace : TCatEx → GenPgc(E) of Theorem 7.18 fits in a
commutative square

CatEx GenCyc(E)

TCatEx GenPgc(E)

C7→(C,id)

Pfbw
1 F lace

Moreover, this cyclotomic refinement is such that F (C) −→ Pfbw
1 F lace(C, id) is a map of genuine

cyclotomic objects where the source is given the trivial cyclotomic structure. In particular, we
have a natural map

F (C) −→ TC(Pfbw
1 F lace(C, id))

in E , which we call the cyclotomic trace.

Applied to K-theory, we therefore get a factorization of the trace map K→ THH as

K(C) TC(THH(C)) THH(C)

For bounded below cyclotomic spectrum, this recovers the cyclotomic trace of say [NS17], and as
in the polygonic case, our factorization is generally finer. Piecing together the different maps we
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have built, we get a commutative diagram of spectra natural in (C,M) ∈ TCatEx:

TR(C,M) THH(C,M)

K(Lace(C,M)) TC(Lace(C,M)) THH(Lace(C,M), id)

K(C) TC(C) THH(C, id)

The goal of section §11 and the ultimate goal of this document is to explain why the bottom left
square is cartesian. For this, it suffices to show that the induced map on vertical fibers, for which
we have used the names Kcyc and TCcyc respectively, is an equivalence. Note that this fiber is split
and the map to TR(C,M) factors through them since TR(C, 0) ≃ 0, so that we have a commutative
triangle:

Kcyc(C,M) TCcyc(C,M)

TR(C,M)

In the next sections, we will investigate the vertical maps and try to understand when they are
equivalences: this is sufficient to try to prove that the square is indeed cartesian.

7.3 Higher derivatives and the polygonic structure
We have produced a lot of structure on the first derivative of a laced invariant. As foretold, this

structure recovers the whole Taylor tower as we now explain. For this, we will need to introduce
truncated versions of the genuine polygonic spectra; recall Definition 6.25 for the meaning of
truncation sets.

Proposition 7.26 Let E be presentable stable. There is a contravariant functor T 7→ GenPgcT (E)
sending a truncation set to the category of T -truncated polygonic spectra, where maps of
truncations sets are given by inclusions.

For T a truncation set, the presentable stable GenPgcT (E) admits a colimit-preserving
functor trivT : E → GenPgcT (E) compatible with the functoriality, as well as a conservative
functor

GenPgcT (E) −→
∏
t∈T
EBCt

We write TRT for the right adjoint to trivT .

Proposition 7.27 Let T ⊂ T ′ an inclusion of truncation sets such that the complement T ′−T =
{n} is reduced to one element. For X ∈ GenPgcT ′(E), there is a natural exact square

TRT ′(X) XhCn
n

TRT (X) XtCn
n

can

where we also denoted X its image in GenPgcT (E). Moreover, there is an equivalence

TR ≃ lim
n∈(N,|)op

TR[n]

where [n] is the truncation set {0, 1, ..., n} and we omitted to write the restriction functors.

Comparing the above square with the usual Kuhn-McCarthy square of Goodwillie calculus (or
the version adapted to the fiberwise-exact situation such as in section 6), we get the following
improvement of the main result of [LM12]:
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Theorem 7.28 Let F : CatEx → E be a finitary Verdier-localizing invariant. Then, there is a
canonical equivalence

Pfbw
n F lace TR[n](Pfbw

1 F lace)≃

where Pfbw
1 F lace is endowed with the genuine polygonic structure of Theorem 7.18. In particular,

at the limit, we get that the map

F lace −→ TR(Pfbw
1 F lace)

identifies its target with the limit of the Taylor tower of F lace.

Corollary 7.29 Let η : F → G be a natural transformation of Verdier-localizing invariants.
Suppose that η induces an equivalence

Pfbw
1 F lace ≃−−→ Pfbw

1 Glace

Then η identifies the Taylor tower of F lace and Glace.

Remark 7.30 Let us make a historical remark: the Dundas-Goodwillie-McCarthy theorem,
the main result of [DGM13], predates the computation of the Taylor tower of K-theory by
Lindenstrauss-McCarthy [LM12] (even though the dates of publications seem to tell a different
story). The reason this is possible is precisely the phenomenon of Corollary 7.29 which was
identified by Goodwillie, but under assumptions of analycity — i.e. convergence of the Taylor
tower. In spirit, this is also how Raskin describes the proof in [Ras18].

Our proof is quite different, and thus more than just a simple upgrade of the usual proof
to a more modern context. In the above section, it was shown that the computation of the
Taylor tower is independent of any convergence phenomenon. Since they are understood prior
to convergence, we will further insist on the higher derivatives when studying analycity so that
our arguments can be stated more generally than if we tried to bootstrap the phenomenon of
Corollary 7.29.

8 Lacing topological Hochschild homology, topological cyclic
homology

The previous sections have amounted to two things: we have a wonderful gadget, which takes a
Verdier localizing functor F : CatEx → E and produces a functor Pfbw

1 F : TCatEx → GenPgc(E)
valued in genuine polygonic objects, whose restriction to CatEx is a functor

Pfbw
1 F : CatEx −→ GenCyc(E)

valued in genuine cyclotomic objects. We have also ran this machine on a concrete example, namely
the K-theory functor K : CatEx → Sp and got as a result the genuine cyclotomic structure on
THH : CatEx → Sp, which in particular produces a Verdier-localizing functor TC : CatEx → Sp.

There is no point in developing this much theory to only apply it once, so the goal of this
section is to play again, with the new functors we produced. As tempting as it is to work with
TC, the approach we choose is to actually feed THH with its extra structure to the theory.

8.1 The derivatives of laced THH
Thanks to Theorem 7.25, we have built a Verdier-localizing (in fact Karoubi-localizing) THH :

CatEx → GenCyc(Sp). In particular, we can consider the following functor on the tangent,
obtained by lacing it:

THHlace :TCatEx −→ GenCyc(Sp)
(C,M) 7−→ THH(Lace(C,M), id)
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As we did in K-theory, we begin by a computation of the first derivative. There is a natural map

THH(Lace(C,M), id) −→ THH(C,M)

induced by the counit of the L := (−, id) ⊣ Lace adjunction. It induces a S1-equivariant natural
map map

α(C,M) : THH(Lace(C,M), id) −→ coindS
1

∗ THH(C,M)

where coindS
1

∗ : Sp → SpBS
1

is the right adjoint to the forgetful functor. In particular, it is also
the right Kan extension along the inclusion ∗ → BS1 and given by the formula Map(S1,−) with
S1-action given by precomposition. In consequence, we can also write an equalizer formula

coindS
1

∗ THH(C,M) ≃ Eq
(

THH(C,M) THH(C,M)
)

because S1 is the suspension of S0, i.e. the coequalizer of two nullhomotopic maps from S0 to itself.

In fact, we can promote this natural transformation to a map of (genuine) cyclotomic spectra.
Abstractly, this is clear because the forgetful functor GenCyc(Sp) → Sp factors through the for-
getful functor SpBS

1
→ Sp and every functor in sight has a right adjoint, which therefore must

compose well.
We still write coindS

1

∗ for the right adjoint to GenCyc(Sp) and we claim that the underlying
spectrum of this right adjoint coincides given by the above equalizer; in fact, coindS

1

∗ X is actually
a genuine cyclotomic spectrum with Frobenius lifts and the maps to homotopy fixed points are
induced by the fact that the S1-action is trivial.

Proposition 8.1 Let (C,M) be a laced category. Then the natural transformation α induces an
equivalence of first derivatives. In particular,

(Pfbw
1 THHlace)(C,M) ≃−−→ coindS

1

∗ THH(C,M)

is an equivalence of genuine cyclotomic spectra where the right hand side has the aforementioned
structure.

Proof. It suffices to check that the map of spectra is an equivalence. Write p : Lace(C,M)→ C
and R : Ind C → Ind Lace(C,M) for the Ind-right adjoint of p. We have

mapLace(C,M) := Eq
(

(pop × p)∗ mapC (pop × p)∗M
)

in the category of Lace(C,M)-bimodules, Since THH is exact in the M -variable, it commutes with
the above equalizer, so that the following formula:

Eq
(

THH(Lace(C,M), (pop × p)∗ mapC) THH(Lace(C,M), (pop × p)∗M)
)

computes THH(Lace(C,M),mapLace(C,M)). Now, using the functors to the Ind perspective on
bimodules, we can rewrite:

THH(Lace(C,M), (pop × p)∗M) = THH(Lace(C,M), R ◦M ◦ p)

so that it becomes clear that the cyclic-invariance of THH implies the following:

THH(Lace(C,M),mapLace(C,M)) := Eq
(

THH(C, p ◦R) THH(C, p ◦R ◦M)
)

Since THH(C,−) is actually colimit-preserving, it suffices to compute the derivative in M of the
functors M 7→ p ◦ R and M 7→ p ◦ R ◦M (note that p ◦ R does depend on M even though the
notation does not show it).

We have already done this computation during the proof of Theorem 6.18, and we remark that
the reduced part of p ◦ R was the constant functor with value the identity idInd C and the first
derivative exactly M 7→M . In particular, we get

Pfbw
1 THHlace(C,M) := Eq

(
THH(C,M) THH(C,M)

)
which is exactly what we wanted.
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Remark 8.2 Note that the above proof works more generally for all cyclic-invariant which are
colimit-preserving in the bimodule. However, they are all of the form X ⊗ THH by a theorem
of Ramzi [Ram24b] so the above proof is already almost at its maximal degree of generality.

We now turn to the higher derivatives. Using Theorem 7.18, we are reduced to understand
the polygonic structure on coindS

1

∗ THH(C,M). Our first remark, which is dual to [LT23, Lemma
4.26], is the following:

Lemma 8.3 Let X be a Cn-spectrum. Then, Y := coindS
1

∗ (X) ≃ Map(S1, X) acquires the struc-
ture of an (S1 ×Cn)-spectrum where Cn acts by conjugating the actions on S1 by rotation and
on X.

It holds that Y is in the smallest stable subcategory of (S1×Cn)-spectra generated by free Cn-
spectrum i.e. whose Cn-action is induced from ∗. Hence, Y tCn ≃ Y τCn ≃ 0 and consequently,
there is a S1-equivariant equivalence:(

coindS
1

∗ X
)

hCn

≃−−→ coindS
1

Cn
X

where µn denotes the canonical copy of Cn in S1.

Proof. Since (S1)hCn
≃ S1/Cn, we have:(

coindS
1

∗ X
)hCn

≃ Map(S1, X)hCn ≃ Map(S1/Cn, X) ≃ coindS
1

µn
X

Thus the last claim reduces to the first. Moreover, we can realize S1 as the following coequalizer
of spaces:

S1 ≃ CoEq
(
{1, ..., n} {1, ..., n}

id

+1 mod n

)
where {1, ..., n} is the discrete space with n points. Passing to Map(−, X) we get the following
equalizer in Sp:

coindS
1

∗ X = Map(S1, X) ≃ Eq
(
X⊕n X⊕nid

ωn

)
where ωn shifts cyclicly each copy of X. Note that with respect to the conjugation action, both
maps are Cn-equivariant so this is a Cn-equivariant equalizer. It follows that coindS

1

∗ X is in the
smallest stable subcategory generated by X⊕n ≃ indCn

∗ X.

In particular, Pfbw
1 THHlace is of the above form. This means that there will not be any non-

trivial Tate constructions and thus any non-trivial maps to supply in the polygonic part of the
structure; to be thorough, we would need to justify that the cyclic action of Theorem 7.18 is indeed
of the above form. We will not show this as it would imply figuring out how the proof of the cited
Theorem works; instead, we cite [HNS25] once again (and for the last time).

Theorem 8.4 The functor Pfbw
1 THHlace : TCatEx → GenPgc(GenCyc(Sp)) lands in the subcat-

egory spanned by Xn such that XτCk

nk ≃ 0. In particular, the nth-derivative of THHlace has
underlying spectrum given by:

(Pfbw
n THHlace)(C,M)) ≃

⊕
1≤k≤n

coindS
1

µk
THH(C,M⊗k)

Moreover, as a genuine cyclotomic spectrum, this expression coincides with R[n](THH(C,M))
where THH is given its truncated genuine polygonic structure and R[n] is the right adjoint of the
composite forgetful functor GenCyc(Sp)→ GenPgc(Sp)→ GenPgc[n](Sp), built in Proposition
7.22 and Proposition 7.26.

In consequence, the limit of the Taylor tower of THHlace is given by

THHlace(C,M) −→ RTHH(C,M)
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where R is the right adjoint to GenCyc(Sp)→ GenPgc(Sp).

Remark 8.5 In general, it need not be that R is given by an infinite product similar to the
previous formula, because non-finite limits are not computed underlying in either GenCyc(Sp)
or GenPgc(Sp) (more precisely, it is an infinite product but only in the category GenCyc(Sp)
and thus not underlying).

However, this holds when all the underlying spectra are uniformly bounded-below: in fact in
this case, since the difference between and non-genuine disappears, we can directly cite [KMN23,
Corollary 2.27].

8.2 Laced topological cyclic homology
The astute reader will certainly expect at this point that to understand the following functor

TClace(C,M) := TC(THH(Lace(C,M)))

where THH is given its genuine cyclotomic structure, we would follow the same route and compute
derivatives. But actually, the previous section is already enough, astuteness be damned! In fact,
computing derivatives of TC would be annoying because TC : GenCyc(Sp) → Sp is not filtered-
colimit preserving and we do not know to get them in full generality, so we are happy to have saved
ourselves the trouble. Recall the following observation:

Lemma 8.6 Let X be a genuine polygonic spectrum. There is an equivalence

TC(R(X)) ≃ TR(X)

where R : GenPgc(Sp)→ GenCyc(Sp) is the right adjoint of the canonical functor.

In particular, in light of Theorem 8.4, we see that:

Corollary 8.7 Let (C,M) be a laced-category. There is a natural map

TCcyc(C,M) := fib(TClace(C,M)→ TC(C)) −→ TR(C,M)

Moreover, this map is an equivalence as soon fib(THHlace(C,M)→ THH(C)) coincides with the
limit of the Taylor tower.

In particular, we have a commutative diagram

Kcyc(C,M) TCcyc(C,M)

TR(C,M)

and we have reduced the study of when the horizontal map is an equivalence to understanding
when two functors coincide with their Taylor towers, namely Klace and THHlace.

9 A general criterion for analytic functors
This section is an interlude: nothing here specifically talks about K-theory or THH, although

those ideas have been introduced due to trace methods considerations by Goodwillie in the series
of articles [Goo90, Goo91, Goo03]. Here, we are particularly interested in the second article and
notably, in the concept of analytic functors, which we revisit here. Some of the results are standard
folklore but we do not of a reference, or even whether Theorem 9.19 is folklore.

9.1 Total fiber of cubes
We begin by a discussion about cubes and their total fibers, following ideas of Section 1 of

[Goo91]. After writing this section, the author was made aware of [ACB22] whose section 2 also
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proves many of the results which follow. First, let us work through how it works for 2-cubes. We
fix a stable category C and the following square therein:

A B

C D

(□)

Lemma 9.1 There is a canonical equivalence

fib(fib(A→ C) −→ fib(B → D)) ≃ fib(fib(A→ B) −→ fib(C → D))

identifying the fiber of the map between vertical fibers and the fiber of the map between hori-
zontal fibers.

Proof. The following is a diagram of exact rows and columns — except one a priori, but since C
is stable, it satisfies the 3× 3 lemma hence every horizontal and vertical sequence below is exact:

K fib(A→ C) fib(B → D)

fib(A→ B) A B

fib(C → D) C D

In particular, the top left vertex is the common fiber as wanted.

Lemma 9.2 Denote P := C ×D B the pullback of □. Then, there there is a canonical fiber
sequence

fib(A→ P ) −→ fib(A→ C) −→ fib(B → D)

Differently stated, the common fiber of Lemma 9.1 is also the fiber of A→ P .

Proof. Let X ∈ C, then a map X → fib(A → C) −→ fib(B → D) is equivalently given by a
diagram of the following shape:

X

A B

C D

0

0

where the 2-simplex making the outer square commute is also zero. This is equivalent to the datum
of diagrams X → A→ P with a nullhomotopy of the composite. This concludes.

The previous phenomenon is not limited to squares: it also holds for higher cubes. Recall that
a n-cube is a functor P([n])→ C where P([n]) denotes the poset of subsets of [n].

Definition 9.3 Let X be a cube. The total fiber of X is the fiber of the canonical map:

X(∅) −→ lim
S ̸=∅

XS

■ Example 9.4 A 1-cube is a map A→ B and its total fiber is simply the fiber of the map. ■

There are exactly n + 1 functors P([n]) → P([n + 1]) corresponding to the poset inclusions
[n]→ [n+ 1], which induce n+ 1 equivalences P([n])× P([1]) ≃ P([n+ 1]), corresponding to the
choice of a direction, showing that a (n+ 1)-cube is nothing else than a map of n-cube.

In particular, we have shown previously that, independently of the direction, the total fiber of
a 2-cube (more commonly known as a square) can also be computed by taking its honest fiber as
a map of 1-cubes and then the total fiber of the resulting 1-cube.
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Theorem 9.5 — Goodwillie. Let X be a (n+1)-cube and consider Xs → Xt any of the associated
map of n-cubes. Then, we have a canonical fiber sequence

totfib(X) −→ totfib(Xs) −→ totfib(Xt)

In particular, the fiber of the right hand map does not depend of a choice of left and right.

Proof. The result for spaces appears as Definition 1.1 in[Goo91]. More generally, we can simply
adapt the argument of Lemma 9.2 to (n + 1)-cubes. Without loss of generality, we pick the map
[n]→ [n+ 1] which misses (n+ 1); we have a commutative square:

X∅ lim
S⊂[n]
S ̸=∅

XS

X{n+1} lim
S⊂[n]
S ̸=∅

XS∪{n+1}

Remark that totfib(Xleft) is the fiber of the horizontal top map where as totfib(Xright) is the fiber
of the horizontal bottom map. Hence Lemma 9.2 concludes if we can show that the total fiber of
the square is also totfib(X); this clearly reduces to showing that

lim
S⊂[n+1]
S ̸=∅

XS −→ X{n+1} ×(
limS⊂[n]

S ̸=∅
XS∪{n+1}

) lim
S⊂[n]S ̸=∅

XS

is an equivalence, which follows from usual decomposition rules on limits (see [Lur08, Proposition
4.4.2.2]).

9.2 Analytic functors
We now record what we will mean by analytic functors. The notion was also introduced by

Goodwillie in [Goo91], although in slightly different words. We use the notations introduced in
§6.1, where we introduced (higher) Goodwillie calculus.

Definition 9.6 Let F : C → D be a functor between presentable stable categories. Denote P∞F
the limit of the tower of PnF , there is a natural transformation F → P∞F .

We say that F is analytic at X ∈ C if the map

F (X) P∞F (X)≃

is an equivalence. When F is analytic for every X, then we will say that F is analytic on C,
and if F is only analytic for some subcategory C0, we will say that F is C0-analytic.

We adopt similar, fiberwise definitions for functors defined on TCatEx, replacing P∞ by Pfbw
∞ .

Remark 9.7 — Mind the gap. In [Goo91], a functor F is ρ-analytic (ρ ∈ N) if it is equivalent to
the limit of its Taylor tower on (ρ+ 1)-connected spaces.

The goal of this subsection is to give a pratical criterion for a functor to be analytic. We
begin by remarking that if C is presentably stable symmetric monoidal and A is a Σn-object in C,
X 7→ (A⊗X⊗n)hΣn

is reduced, n-homogeneous and preserves sifted colimits (recall that I is sifted
if I → I×k is cofinal for k ≥ 1). In particular, for any choice of Ak with Σk-actions, the functor

X 7−→
∐
n≥1

(An ⊗X⊗n)hΣn

preserves sifted colimits. In fact, in some favorable cases such as when C is the category of T (n)-
local spectra, every sifted-colimit preserving functor is of this form (see [Lur17b, Lectures 8 and 9]
where such functors are called coanalytic).
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Remark that the above expression is a functor whose n-homogeneous part is given by (An ⊗
X⊗n)hΣn

and whose Goodwillie-Taylor tower is split with limit is given by the same expression
but with a product. In good circumstances, for instance if C has a right-complete t-structure
compatible with filtered colimits, the An are connective and X is taken to be 1-connective, then
the product and the coproduct coincide so that this functor is actually analytic.

In fact, our criterion for analyticity will not be too different, but it will need to take into account
a more general situation in two different ways. First, neither Klace nor THHlace preserve fiberwise
sifted colimits globally, but only for sufficiently nice (“connective”) objects. Secondly, the Taylor
towers of these two functors are not split.

For the rest of this section, let C,D be stable categories and suppose D has a right-complete
t-structure compatible with filtered colimits. Fix also C≥0 a full subcategory closed under colimits
of C whose objects we refer to as connective.

Definition 9.8 A functor F : C → D is said to be rigid if it is reduced, sends connective objects
to connective objects and preserves sifted colimits of connective objects.

Warning 9.9 Even if we write C≥0 and call its objects connective, it need not be that this
category is the connective part of a t-structure on C. To further confuse the reader, we will
write C≥n := ΣnC≥0 and call such objects n-connective.

However, we will need that D≥0 is the connective part of a t-structure on D which is right-
complete, to be able to use the connectivity estimates of Dold-Kan as in [Lur17a, Proposition
1.2.4.5].

Our goal is to show that being rigid is a sufficient condition for a functor to be analytic on suffi-
ciently connected objects. The following general lemma, stemming from Dold-Kan considerations,
will be quite central for us.

Lemma 9.10 Let k ≥ 1 and F : C → D a reduced functor between stable categories. If X ∈ C,
the simplicial object F (X⊕•) whose nth-simplicies are given by F (X⊕ ...⊕X) with n summands
fits in an exact sequence:

|F (X⊕•)|≤k−1 |F (X⊕•)|≤k ΣkcrkF (X, ...,X)

where crkF is the kth-cross-effect of F and | · |≤k is the truncated geometric realization, i.e. the
colimit of the simplicial object restricted to the full subcategory spanned by [0], ..., [k].

Proof. Note that X⊕• is the simplicial object associated to the Čech nerve of the map 0→ ΣX,
and F (X⊕•) is obtained by post-composing this simplicial object by F . Moreover, since colimits
are functorial, there is a canonical map

|F (X⊕•)|≤k−1 |F (X⊕•)|≤k

By [Lur17a, Remark 1.2.4.3], the wanted cofiber is precisely ΣkCk where Ck is the cofiber of

colim
S⊂[k]
S ̸=[k]

F (X⊕|S|)→ F (X⊕k)

This latter cofiber is crkF (X, ...,X) by [Lur17a, Proposition 6.3.3.13] (or by definition, depending
on taste) which concludes.

Proposition 9.11 Let F : C → D be rigid and X ∈ C connective, then the map

f : F (X)→ ΩF (ΣX)

is 1-connective (i.e. has a 1-connective cokernel). In particular, F maps n-connective objects
to n-connective objects for n ≥ 0.

Proof. Let X ∈ C≥0. We show that ΣF (X) → F (ΣX) is 2-connected. The Čech nerve of the
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map 0→ ΣX induces a map:∣∣∣∣... X ⊕X X 0
∣∣∣∣ ΣX≃

We note that this map is an equivalence: indeed, the truncated geometric realization |X⊕•|≤1
is already ΣX by k = 1 in Lemma 9.10, and it also follows from this Lemma that the finite
geometric realization coincides with |X⊕•| under the canonical map, since id is exact and thus all
its k-cross-effect for k ≥ 2 vanish (see Proposition 6.1.4.10 [Lur17a]).

Since F preserves sifted colimits of connective objects and every X⊕n is connective, this means
F (ΣX) can be computed as the geometric realization of F (X⊕•). Remark that we still have

ΣF (X) ≃ |F (X⊕•)|≤1

hence the map ΣF (X)→ F (ΣX) is the canonical map

|F (X⊕•)|≤1 → colim
n
|F (X⊕•)|≤n

The wanted result now follows from either Lemma 9.10 by remarking that cross-effect are split-
cofibers and thus (crkF )(X, ...,X) is still connective for X connective or more directly [Lur17a,
Proposition 1.2.4.5(4)], since |F (X⊕•)|≤1 → |F (X⊕•)|≤n is 2-connected for every n.

For a rigid F and a connectiveX, Lemma 9.10 shows that the biggest obstruction in connectivity
to F (X) being equivalent to P1F (X) is the second suspension of the second cross-effect cr2F (X,X).
But cr2F is actually a functor in two variables, which is reduced and preserves sifted colimits in
both. This allows for the following trick:

Lemma 9.12 Suppose F : C × C → D is rigid separately in both variables and n ≥ 0. Then, F
maps n-connective objects to 2n-connective objects. More generally, if F is rigid in k variables,
it maps n-connective objects to kn-connective objects.

Proof. Since F is rigid, for any connectiveX, F (X,−) sends n-connective objects to n-connective
objects. But, then, for any Y ∈ C which is n-connective, we have a rigid functor which restricts to

F (−, Y ) : C≥0 → D≥n

Hence, this functor is again rigid when we consider D with the t-structure shifted by n (where
connective objects are D≥n); indeed, connective objects in this new structure were connective
before and preservation of connective sifted colimits is automatic. Then, applying Proposition
9.11 again concludes.

In particular, thanks to Lemma 9.10 and Proposition 9.11, we have shown:

Corollary 9.13 If X is 1-connective and F is rigid, then F (X) → ΩF (ΣX) has a 3-connective
cokernel, hence a 2-connective kernel.

Let us now attempt to climb up the Taylor tower. Let X ∈ C, consider S 7→ CS(X) the strongly
cocartesian n-cube generated by the arrows {X → 0}. As in [Lur17a, Construction 6.1.1.22], we
write TnF (X) for the limit limS ̸=∅ F (CS(X)). There is a map fn(X) : F (X)→ TnF (X) and it is
natural in X; in particular, TnF is a well-defined functor C → D.

Lemma 9.14 Let F : C → D be a functor and n ≥ 2. Then the total fiber Fn(X) of the n-cube
F (CS(X)), which is by definition the fiber of F (X)→ TnF (X), is given by:

Fn(X) ≃ fib
(
Fn−1(X) −→ Ωn−1crnF (ΣX, ...,ΣX)

)
where crnF is the nth-cross effect of F , i.e. the initial functor under F (X1 ⊕ ...⊕Xk) which is
reduced in every of the n variables.

Proof. Write Xn for the n-cube F (CS(X)). Viewing Xn as a map of (n− 1)-cubes in any way,
its source is exactly Xn−1, whose total fiber is Fn−1(X). Hence, by Theorem 9.5, it suffices to
understand the target (n− 1)-cube and compute its total fiber.
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The target (n− 1)-cube is a cube with 0 as its top vertex and F (ΣX ⊕ ...⊕ΣX) with k = |S|
summands at the vertex S ⊂ [n − 1], and the maps are given by the canonical injections of the
coproduct. It follows from [Lur17a, Proposition 6.3.3.13] that crnF (ΣX, ...,ΣX) identifies with
the total fiber of the cube with value F (ΣX ⊕ ... ⊕ ΣX) at the vertex S ⊂ [n − 1], where there
are (n − 1) − |S| summands (in fact, for Goodwillie, this was a definition in [Goo03, Section 3]).
Hence, the total fiber of the cube we want is exactly Ωn−1crnF (ΣX, ...,ΣX) which concludes.

Remark 9.15 Remark also that the following square has exact rows and columns:

ΩD̂nF (X) 0 D̂nF (X)

Fn(X) F (X) TnF (X)

Fn−1(X) F (X) Tn−1F (X)

In particular, there is a fiber sequence

Fn(X) −→ Fn−1(X) −→ D̂nF (X)

which, by the above proposition, identifies D̂nF (X) with Ωn−1crnF (ΣX, ...,ΣX).

In particular, the following holds:

Lemma 9.16 Let F : C → D be rigid. Then TnF : C → D is rigid.

Proof. Given the formula, it is clear that TnF is reduced. Since both C and D are stable,
sifted colimits commute with finite limits so that the formula also shows that TnF preserves sifted
colimits of diagrams valued in C≥0.

Finally, to show that TnF preserves connective objects, Remark 9.15 provides an exact sequence

Ωn−1crnF (ΣX, ...,ΣX) −→ TnF (X) −→ Tn−1F (X)

By Lemma 9.12, the left hand side is connective and by induction so is the right hand side, the
initial case n = 1 was dealt already Proposition 9.11. This concludes because connective objects
are closed under extension.

We are almost ready to prove the main result of this section; we recall before that a folklore
result about cross-effect. Recall that crnF is the functor in n-variables under F (X1 ⊕ ... ⊕ Xn)
which reduced in X1, ..., Xn.

Lemma 9.17 Let F : C → D be a reduced functor, n, k ≥ 2 and X1, ..., Xn+k−1 ∈ C then

crkF (crnF (X1, ..., Xn−1,−))(Xn, ..., Xn+k−1) ≃ crn+k−1F (X1, ..., Xn−1, Xn, ..., Xn+k−1)

functorially in the Xi.

Proof. By definition, crn+k−1F is the reducification in each variable of the functor Gn+k−1[F ]
given by

Gn+k−1[F ](X1, ..., Xn+k−1) := F (X1 ⊕ ...⊕Xn+k−1)
In particular, the wanted identification follows from remarking that

Gn+k−1[F ](X1, ..., Xn+k−1) ≃ Gn(X1, ..., Xn ⊕ ...⊕Xn+k−1)
≃ Gk[Gn(X1, ..., Xn−1,−)](Xn, ..., Xn+k−1)

and this is of course functorial in the Xi.

If F is a functor in n variables, and m⃗i := (m1, ...,mn) a tuple of n integers, we write Pm⃗i
F the

initial functor under F which is mi-excisive in the position i, which exists by [Lur17a, Proposition
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6.1.3.6]. The proof of the previous lemma, combined with the fact that reducification does not
change the value of derivatives (Remark 6.1.3.19 of [Lur17a]), immediately adapts to the following
statement, which is probably less-known (so in consequence, more folklorish?):

Corollary 9.18 Let F : C → D be a reduced functor, n, k ≥ 2 and X1, ..., Xn−1 ∈ C and
m⃗i := (m1, ...,mn−1), then

crkF ((Pm⃗i
crnF )(X1, ..., Xn−1,−)) ≃ (P

m⃗′
i

crn+k−1F )(X1, ..., Xn−1,−, ...,−)

where, on the right hand side, we also denoted m⃗i the tuple (m1, ...,mn−1, 0, ..., 0).

We have now enough to show the following, which will be our main criterion to show that
functors are analytic on a suitable subcategory:

Theorem 9.19 Let F : C → D be rigid and X 1-connective, then the following map is an
equivalence:

F (X) P∞F (X)≃

Differently stated, F is analytic on 1-connective objects.

Proof. Let X be 1-connective. Since the t-structure at the target is assumed right-complete, it
suffices to show that F (X) → PnF (X) has connectivity going to +∞ as n → +∞. By iterating
Lemma 9.16, we see that PnF is again rigid, so up to replacing F by fib(F → PnF ), it suffices to
show that if F is such that PkF ≃ 0 for 1 ≤ k ≤ n, then F (X) is (n+ 1)-connective.

We note that this hypothesis implies that P(1,...,1)crkF (X1, ..., Xk) ≃ 0 for 1 ≤ k ≤ n and
(X1, ..., Xk) any tuple of 1-connective objects. Consequently, leveraging Lemma 9.12 for k ≥ n+1,
we get that P(1,...,1)crkF (X1, ..., Xk) is (n + 1)-connective regardless of k ≥ 1. We now prove by
descending induction that

crkF (X1, ..., Xk) −→ P(1,...,1)crkF (X1, ..., Xk)

has (n+ 1)-connective fiber and consequently, crkF (X1, ..., Xk) is also (n+ 1)-connective. This is
clear for k ≥ n + 1. We factor this map through partial derivatives of the form Pδ⃗i

where δ⃗i is a
tuple of zeroes up to i and then ones. Note that the map

Pδ⃗i
crkF (X1, ..., Xk) −→ P ⃗δi+1

crkF (X1, ..., Xk)

is as in Proposition 9.11, the map of a functor to its first derivative. Hence, similarly, Lemma 9.10
proves that its cofiber is an (infinite) extension of shifted cross-effects and by Corollary 9.18 these
are cross-effects of order at least (k+ 1). But now, by the induction hypotheses, all of them are at
least (n+ 1)-connective. The claim thus follows.

But now, if all the Xi are equal to the 1-connective X we introduced previously, the resulting
connectivity estimate on crkF (X, ...,X) implies a connectivity estimate on the cofiber of

ΣF (X) −→ F (ΣX)

by the same strategy as in Proposition 9.11, using the Dold-Kan estimates of Lemma 9.10. Namely,
it follows that the map

F (X) −→ ΩF (ΣX) ≃ T1F (X)

has (n + 1)-connective fiber. Finally, remark that if F is rigid such that PkF ≃ 0 for 1 ≤ k ≤ n,
then so is T1F so that iteratively, we get that the map F (X)→ P1F (X) ≃ 0 has (n+1)-connective
fiber. Consequently, F (X) itself is (n+ 1)-connective which concludes.

10 Resolution theorems and rigidity
In the previous section, we have a criterion for analyticity which involves preservation of con-

nectivity and of certain sifted colimits. The first part is rather straightforward for Klace(C,−)
since it always lands in connective spectra but the second requires more thought. The goal of
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this section is to introduce a framework, which was first developed in [Sau23b], which we repro-
duce in part, and which is completed by [SW25], which in particular allows to define a subcategory
Bimod(C)≥0 closed under colimits in Bimod(C) and to show laced K-theory preserves sifted colimits
when restricted to such “connective” bimodules.

10.1 Heart structures and resolution
Recall the following definition, due to Quillen in [Qui73] for 1-categories and Barwick in [Bar16]

for higher categories.
Definition 10.1 — Definition 3.1 of [Bar15]. Let C be an additive category. An exact structure
on C is the datum of two subcategories Cinj and Cproj containing all equivalences and whose
arrows are denoted respectively ↪→ and ↠, which we choose to call respectively exact inclusions
and exact projections, subject to the following conditions:

• For any X ∈ C, 0 ↪→ X is an exact inclusion and X ↠ 0 an exact projection.

• Exact inclusions are stable under pushout against any map and exact projections under
pullback against any mapa.

• Any square:
X Y

Z T

is a pullback of a span with a leg in Cinj and the other in Cproj if and only if it is a pushout
of a cospan with the same condition.

If C is an exact category, we will call exact sequences those squares as in the third bullet point
where Z = 0.

aIn particular, such pullbacks and pushouts are required to exist.

In particular, every additive category can be promoted to an exact category by considering
direct sums inclusions as exact and direct sums projections are exact.

On the other hand, considering stable categories as exact categories where every map is an
exact inclusion and an exact projection provides a fully-faithful functor CatEx → Exact∞. This
functor admits a left adjoint by work of Klemenc [Kle23], which we call the stable envelope functor
and denote Stab. Klemenc proved the following:

Proposition 10.2 — Theorem 1 of [Kle23]. Let E be an exact category, then the canonical functor
E → Stab(E) is fully-faithful and detects exact sequences, so that E is in particular closed under
extensions.

Warning 10.3 We note that Stab is not in general the stabilization of a category with finite
limits, which has been always denote Sp(−) in this text. In fact exact categories need not have
all finite limits, and conversely categories with finite limits need not be additive hence cannot
have exact structures.

We are particularly interested by the behavior of K(E)→ K(Stab(E)). This is not new behavior:
since its inception in Quillen’s work, there has been this idea that K can be equivalently defined
by using the additive category Proj(R)ft of projective finite type R-modules or the stable category
Perf(R) of compact R-modules11.

Our goal in this section is to show that Quillen’s original idea for tackling this question stands
the test of time. We are led to introduce the following higher categorical analogue of the conditions
of [Qui73, Theorem 3]

Definition 10.4 Let i : A → C be a fully-faithful functor whose image is closed under extensions.
Suppose C is exact and endow A with the inherited structure. We say that i is resolving if it

11Or, if one sticks to Quillen’s set-up, the abelian category given as the heart of the t-structure on Perf(R), the
ordinary category of finitely presented R-modules, which by a famous theorem of Barwick has the same K-theory
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satisfies the following two additional properties:

(i) For every exact sequence X Y Z with Y ∈ A, we have X ∈ A

(ii) For every Z ∈ C, there is an exact sequence X Y Z with Y ∈ A.

We say i is op-resolving if iop is resolving.
In subsequent sections, we will show that K-theory and THH, suitably defined for exact cate-

gories, does invert resolving inclusions. Thus, the first sanity check (which also happens to be an
important part of the story) is the following:

Lemma 10.5 Let i : A → C be a resolving functor. Then, it induces an equivalence

i∗ : FunEx(C,D) FunEx(A,D)

for every stable D. In particular, i induces an equivalence Stab(A) ≃−→ Stab(C).

Proof. The crux of the proof lies in the fact that those conditions force the values on C from the
values on A for functors which preserve exact sequences.

Let X ∈ C, then we define Ex(X) to be the category of exact sequences

A B X

where A,B ∈ A. Note that Ex is not a priori a functor in X. However, denote Null(X) the
category of sequences A B X with a given null homotopy of their composite, where
we no longer require the maps to be exact inclusions or exact projections. Remark that Null(X)
is clearly a functor in X as it is the fiber of the map

Fun({•2 ←− •0 −→ •1}, C/X) Fun({•2}, C/X) ≃ C/X

We claim the inclusion Ex(X)→ Null(X) is cofinal. By [Lur08, Theorem 4.1.3.1], we are reduced
to checking that for every B0 → X with B0 ∈ A, the category of factorizations

B0 B X

is weakly contractible. This category is nonempty: indeed, by (ii) there is a map B ↠ X with
B ∈ A and the induced B0 ⊕ B ↠ X is an exact projection by Lemma [Bar15, Lemma 4.7].
Moreover, this category also admits products, given by the pullback B×X B′ ↠ X equipped with
its canonical map from B0. One checks that B ×X B′ ∈ A by closure under extension of A in C
and that the map is indeed a projections since they are stable under pullback and composition.
Consequently, the comma category in question is indeed weakly contractible and the map cofinal.

In consequence, if F : A → C is any functor, the following formula defines a functor R(F ) with
source C and target D:

R(F )(X) := X 7−→ colim
Ex(X)

(cofib(F (A)→ F (B))) ≃ colim
Null(X)

(cofib(F (A)→ F (B)))

Since colimits are functorial, R upgrades to a functor Fun(A,D) → Fun(C,D) taking F to R(F ).
The canonical F (B)→ cofib(F (A)→ F (B)) induces a natural map in X as follows:

colim
Null(X)

F (B) −→ colim
Null(X)

(cofib(F (A)→ F (B)))

If X ∈ A, then Null(X) has a terminal object given by the sequence 0 X X hence
both colimits evaluate to F (X), which provides a natural equivalence F → i∗R(F ). This equiv-
alence is again natural in F . Moreover, suppose G : C → D is a functor, there is a map
cofib(G(A) → G(B)) → G(X) for every object of Null(X), hence we have a natural transfor-
mation R(i∗G)→ G, which is itself natural in G.
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Suppose further that F : A → D is exact, then we claim that R(F ) is also exact. We first
show that F sends exact sequences of Ex(X) to exact sequences, and then we deal with the more
general case. Let

A B X A′ B′ X

be exact sequences in Ex(X). We have a diagram with exact rows and columns:

0 A A

A′ B′ ×X B B

A′ B′ X

By closure under extension of A, we have that B′×X B ∈ A. Since F is exact in A, it sends every
sequence save for the bottom horizontal and the right vertical ones to exact sequences in D. By
pasting, taking the pushout F (B′)

∐
F (B′×XB) F (B) completes the diagram where we applied to

F to have exact rows and columns. We deduce from this the following equivalences:

cofib(F (A)→ F (B)) ≃ F (B′)
∐

F (B′×XB)

F (B) ≃ cofib(F (A′)→ F (B′))

This shows that the functor Ex(X) → C sending (A B X) to cofib(F (A) → F (B))
inverts every arrow in Ex(X).

Since Ex(X) is cofinal in Null(X) which has an initial object, Ex(X) is contractible; it fol-
lows that the colimit over Ex(X) of cofib(F (A) → F (B)) is constant. In particular, for every
(A B X), the canonical map is an equivalence

cofib(F (A)→ F (B)) −→ colim
Ex(X)

(cofib(F (A′)→ F (B′)))

Consequently, using the natural equivalence F → i∗R(F ) we constructed, we see that R(F ) sends
the objects of Ex(X) to exact sequences.

We now deal with the general case and show R(F ) sends all the exact sequences in C to exact
sequences in D. Let X Y Z be an exact sequence of C and let A B Y be
an exact sequence with A,B ∈ A as provided by hypothesis (i) and (ii) of Definition 10.4. Then,
we have a diagram with exact rows and columns:

A A 0

X ×Z B B Z

X Y Z

where X ×Z B ∈ A by (i). Applying R(F ) to this diagram, every sequence save for the bottom
horizontal one is sent to an exact one in D, hence this is also the case for the bottom horizontal
one, which shows the wanted statement. Consequently, R(F ) is exact as wanted.

We have a well-defined functor R : FunEx(A,D)→ FunEx(C,D) coming with a natural equiva-
lence id → i∗ ◦ R. Moreover, if G : C → D is exact then the natural transformation R(i∗G) → G
we have constructed earlier is an equivalence; indeed, we have shown previously that this is the
case on A and for every X ∈ C, there is an exact sequence

A B X

such that A,B ∈ A; the result now follows from the exactness of both G and R(i∗G). Hence R is
an equivalence with inverse i∗, which proves the wanted claim.

Of course, if i : A → C is op-resolving, applying the above to iop and Dop for a stable D
immediately implies the dual version:
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Corollary 10.6 Let i : A ⊂ C be op-resolving. Then, the following functor

i∗ : FunEx(C,D) FunEx(A,D)

is an equivalence for every stable D. In particular, i induces an equivalence Stab(A) ≃ Stab(C).

To leverage the idea of resolving functors against our problem, we will introduce an additional
condition, which aims at answering the converse problem: given a stable category C, how do we
know if it is the stable envelope of some exact category E (other than itself).

Definition 10.7 Let C be a stable category. A heart structure on C is the datum of a pair of full
subcategories (C≥0, C≤0) subject to the following conditions:

• (i) C≥0, C≤0 are closed under extensions, C≥0 under finite colimits and C≤0 under finite
limits.

• (iii)a For any C ∈ C, there is an exact sequence

X C ΣY

with X ∈ C≤0 and Y ∈ C≥0.

A heart-exact functor between heart structures is an exact functor f : C → D on the
underlying categories which preserves the two full subcategories of the structure. We denote
CatEx

♡ the category of heart structures and heart functors between them.
aThe name of this condition is intentional, we simply consider condition (ii) empty.

Heart structures are a weakening of weight structures, introduced by Bondarko in [Bon10] for
triangulated categories and refined to stable categories by Sosnilo in [Sos19]. Weight structures
on a stable category satisfy the same axioms with the addition of a number (ii), which states for
every P ∈ C≥0 and N ∈ C≤0, the mapping spectra map(N,P ) must be connective.

In loc. cit., Sosnilo showed that taking the heart — the intersection of non-positive and non-
negative categories — is a fully-faithful functor with target additive categories, whose essential
image is the subcategory of weakly-idempotent complete additive categories. Here, recall that an
additive category is weakly-idempotent complete if every split-projection has a fiber.

Definition 10.8 We write C[i;j] for the intersection ΣjC≤0∩ΣiC≥0. The heart of a heart structure
is the category C[0;0].

We will say that a heart structure on C is bounded if

C ≃
⋃
n≥0
C[n;n]

i.e. every object of C is both a shift of an object in C≤0 and an other shift of an object in C≥0.

Let us first record the following fact, which holds for weight structures by [HSH21, Lemma
3.1.5] and whose proof is exactly the same:

Lemma 10.9 Let a ≤ c ≤ b be three integers, X ∈ C[a,b] and Y X ΣZ an exact
sequence with Y ∈ C]−∞,c] and Z ∈ C[c,+∞[.

Then, we have Y ∈ C[a,c] and Z ∈ C[c,b].

Proof. This is the same proof as [HSH21, Lemma 3.1.5] which shows the corresponding fact for
weight structures; consider the rotated exact sequences:

Z Y X X ΣZ ΣY

The Lemma follows from closure under extensions of the relevant categories, which holds by hy-
pothesis for us, applied to the above sequences.
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Theorem 10.10 Let C be a bounded heart category. Then, the inclusion C♡ → C factors as the
(possibly infinite) composition of resolving or op-resolving functors. Consequently, we have an
equivalence

Stab(C♡) C≃

Proof. The result follows from the following two facts:

(a) Let i ≤ j, then C[i,j] → C[i,j+1] is resolving

(b) Let i ≤ j, then C[i,j] → C[i−1,j] is op-resolving

Since the heart structure on C is bounded, this implies that the inclusion C♡ → C is a composition
of resolving and op-resolving functors as wanted. The proof of (b) will be dual to the proof of (a),
hence let us only do the latter. We remark already that C[i,j] is closed under extensions in C hence
in all of its exact subcategories.

Let X Y Z be an exact sequence such that X,Z ∈ C[i,j+1] and Y ∈ C[i,j]. Then,
Lemma 10.9 ensures that X ∈ C[i,j] which gives (i).

If Z ∈ C[i,j+1], then applying condition (iii) of Definition 10.7 to ΩjZ implies there is an exact
sequence

X Y Z

such that X ∈ C≥j and Y ∈ C≤j . It follows from Lemma 10.9 that Y ∈ C[i,j], which gives (ii).

In section §11.3, we will provide examples of interesting heart structures appearing "in the
wild". We delay the concrete application of the above statement until then, and instead, deduce
the abstract consequence in what follows.

Corollary 10.11 The functor (−)♡ : CatEx
♡,b → Exact∞ taking a bounded heart category to its

heart is fully-faithful.

Proof. Let C,D be heart categories, we want to prove that the functor

Φ : Fun♡−Ex(C,D) FunEx(C♡,D♡)

is an equivalence, the left hand side denoting the full subcategory of FunEx(C,D) spanned by
heart-exact functors. By Theorem 10.10, the inclusion i : C♡ → C induces an equivalence:

i∗ : FunEx(C,D) FunEx(C♡,D)≃

Under this equivalence, the full subcategory of heart-exact functors is mapped to a full subcategory
of FunEx(C♡,D♡). One checks that by the explicit formula for the inverse provided in Lemma 10.5
that any functor C♡ → D♡ induces a heart-exact functor C → D. This concludes.

Remark 10.12 Differently stated, the above Corollary says that an exact functor C → D between
bounded heart categories is heart-exact if and only if it maps C♡ to D♡.

Only one question remains: what is the essential image of the heart functor of heart categories.
This is the content of joint work with Christoph Winges, which has appeared in [SW25] and which
we now present:

Proposition 10.13 Let E be an exact category and denote E⊕ the underlying additive category,
then the canonical map p : Stab(E⊕)→ Stab(E) is a Verdier projection.

Proof. The functor Ind(p) identifies with

Fun⊕(Eop,Sp) −→ FunEx(Eop,Sp)

which is left adjoint to the precomposition. Since this adjoint is fully-faithful, Ind(p) is a localiza-
tion. Moreover, remark that the kernel of Ind(p) is compactly-generated; indeed, it is generated
by those additive functors F : Eop → Sp of the form

cofib(cofib(j(X) ↪→ j(Y ))→ j(Z))
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for a short-exact sequence X ↪→ Y ↠ Z, with j the Yoneda embedding of E , and this colimit is
finite, hence preserves compactness. This implies that p is a Karoubi projection, and it is a Verdier
projection if and only if it is essentially surjective by [CDH+23b, Corollary A.3.9]. This follows
from the proof of [Kle23].

In particular, since one can build heart (and in fact weight) structures for stable envelope of
additive categories by work of Bondarko (see also [Sau23b, Proposition 2.13]), it suffices to see:

Proposition 10.14 — S.-Winges. Let E be an exact category. There is a bounded heart structure
on Stab(E) such that the functor p : Stab(E⊕)→ Stab(E) is heart-exact.

Proof. Write Stab(E)≥0 for the image of Stab(E⊕)≥0 under p. Then, Stab(E)≥0 is closed under
extensions and finite colimits in Stab(E) because this already holds before applying p. Recall
that Stab commutes with taking opposite. Letting Stab(E)≤0 be the opposite of the image of
(Stab(Eop)≥0) in Stab(Eop), one sees that the above arguments dualize to show that Stab(E)≤0 is
closed under finite limits and extensions.

It also follows that there exists the wanted decompositions since they exist in Stab(E⊕) and p
is an essentially surjective, exact functor. The boundedness is also obvious.

Recall that an additive category A is said to be weakly-idempotent complete if every retract
diagram i : A → X, r : X → A and r ◦ i = idA comes with an equivalence X ≃ A ⊕ B such that
r is the projection onto A. Equivalently, A has fibers of split projections. The following is proven
in more details in Proposition 5.3 of [SW25].

Theorem 10.15 — S.-Winges. Suppose E is weakly-idempotent complete. Then, E identifies as
the heart of the heart structure on Stab(E)

Proof. If E is endowed with a split-exact structure, then this is the content [Sau23b, Proposition
2.13] (see also Sosnilo’s proof [Sos19, Corollary 3.4]) and we will not reproduce the proof here. In
particular, this applies to the weight structure on Stab(E⊕). We now seek to extend this result to
non-split exact E .

Since E is weakly-idempotent complete, it is closed under fibers of projections which lie in
Stab(E)≥0 (see [SW25, Theorem 3.13], but the hard direction follows essentially from the proof of
[Kle23, Proposition 4.25]). Moreover, the heart structure on Stab(E) is built through the projection
of Proposition 10.13:

p : Stab(E⊕) −→ Stab(E)

Since p is a heart-exact functor, it carries the heart to the heart. Any object in Stab(E)♡ is
witnessed as an object of Stab(E)≥0 by some resolution (and dually for Stab(E)≤0) but such
a resolution must come from a resolution in Stab(E⊕)≥0 by construction. In particular, p is
essentially surjective on the heart. But by naturality, the composite

E⊕ Stab(E⊕) Stab(E)

factors through E . Hence Stab(E)♡ identifies with E .

10.2 A resolution theorem for K-theory
We prove the resolution theorem for K-theory using the Q-construction; in particular, this

part of the argument depends on more than just the universal property for K-theory. We refer to
[Bar13] for a self-contained reference on the Q-construction.

Another proof of the resolution theorem exists, due to Staffeldt in [Sta89], which works using
the the S• construction which can also be adapted to the higher categorical world12

Theorem 10.16 — Quillen’s resolution theorem. Let i : A → C be a resolving functor. Then, i
induces an equivalence of spaces |Q(A)| ≃−→ |Q(C)| so consequently an equivalence on the level

12And has been in the lecture notes by Christoph Winges.
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of K-theory.

Proof. Denote B the full subcategory of Q(C) spanned by the image of Q(A). We have a
factorization

Q(A) B Q(C)g f

and we will show that both maps induce equivalences on the geometric realizations by showing that
gop and f are cofinal. For both proofs, we use the higher categorical version of Quillen’s Theorem
A (see [Lur08, Theorem 4.1.3.1]), and are reduced to show some categories are weakly contractible.

We first show f is a weak equivalence. Let X ∈ Q(C), it suffices to show that M := B ×Q(C)
Q(C)X/ is contractible; by construction, M is a category whose objects are spans X ↞ Z ↪→ A
with A ∈ A. Consider the wide subcategory Qproj(C) of Q(C) composed of spans X ↞ Z ↪→ Y
where the map Z → Y is an equivalence; this category is equivalent to the wide subcategory
(Cproj)op of Cop whose arrows are exact projections.

DenoteMproj the subcategory ofM given by B×Q(C)Q
proj(C)X/; this a full subcategory ofM

since it is equivalently the pullback along the projection from M of Qproj(C)X/ → Q(C)X/ which
is easily checked to be fully-faithful. Its objects are equivalently exact projections A ↠ X with
A ∈ A and a map from A ↠ X to A′ ↠ X is the datum of an exact projection A′ ↠ A and a
homotopy which makes the obvious triangle commute (note the order reversal).

By [HHLN20, Proposition 4.9], the collection of spans where the right hand map an equivalence
(purely forward pointing spans in the parlance of loc. cit.) and spans where the left hand map is
the identity (purely backward pointing spans) forms an orthogonal factorization system on Q(C)
(see [Lur08, Definition 5.2.8.8]). It follows from Lemma 5.2.8.19 of loc. cit. that the inclusion
Qproj(C)X/ → Q(C)X/ admits a right adjoint given on objects as follows:

(X Y Z) (X Y Y )idY

For any span X ↞ Z ↪→ Y with Y ∈ A, we have Z ∈ A as well hence the above descends
to a functor M → Mproj . One readily checks that it provides a right adjoint to the inclusion
Mproj → M hence the latter is a homotopy equivalence. Thus we are reduced to showing that
Mproj is weakly contractible.

By (ii), the categoryMproj is nonempty since there exists B ↠ X with B ∈ A. Moreover, given
two projections Y ↠ X and Y ′ ↠ X, then closure under extensions of A implies that Y ×X Y ′ is
an object of A since it fits in the following exact sequence of C:

Z Y ×X Y ′ Y

where we have taken Z to be the object fitting in an exact sequence Z ↪→ Y ↠ X, which by (i)
implies that Z ∈ A. In particular, by fixing some object p : A0 ↠ X in Mproj , and denoting P
the functor sending A↠ X to A×X A0 ↠ X, one obtains two natural transformations id =⇒ P
and cstp =⇒ P which together imply that Mproj is weakly contractible.

In order to show that g is a weak equivalence, we let X ∈ B and working dually, we show that
N := Q(A) ×B B/X is weakly contractible; this time, N is a category whose objects are spans
Y ↞ Z ↪→ X (mind the order) and all three X,Y, Z ∈ A though the maps of the span are only
exact inclusions/projections in the exact structure on C. However, note that a map in N from
(Y ↞ Z ↪→ X) to (Y ′ ↞ Z ′ ↪→ X) are given by diagrams of the following shape:

Y T Z

Y ′ Z ′

X

∈A
∈A

where every object is in A, the maps indicated ∈ A are exact injections/projections in the exact
structure of A and the square is cartesian in C; in particular, it follows from this last condition
that Z ↪→ Z ′ is already an exact inclusion in the exact structure of A.
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Dually to what have done before, we can consider Qinj(C) the wide subcategory of Q(C) whose
arrows are spans Y ↞ Z ↪→ X with Z → Y an equivalence, and Binj the full subcategory of
Qinj(C) spanned by Qinj(A). Let N inj be the subcategory of N given by Q(A) ×B Binj/X ; again,
N inj is a full subcategory of N . It has equivalently objects exact inclusions Z ↪→ X and morphisms
given by exact inclusions Z ∈A

↪−−→ Z ′ featuring in an exact sequence of A as well as a homotopy
which makes the obvious diagram commute (note there is no order reversal here).

Finally, remark that the left adjoint to the inclusion Qinj(C)/X → Q(C)/X which only keeps
non-trivial the exact-inclusion, sends BX/ to BinjX/ and Q(A)/X to Qinj(A)/X , so that it descends
to N by virtue of (i). Hence, N inj → N is a homotopy equivalence. To conclude, remark that
N inj has an initial object, given by the span 0 ↞ 0 ↪→ X.

Remark 10.17 The situation sometimes calls for a dual version of the above. Indeed, recall that
K(C) ≃ K(Cop) so that the Lemma also applies if i is op-resolving, i.e. if the following two
conditions are met:

(i’) For every exact sequence X Y Z with Y ∈ A, we have Z ∈ A

(ii) For every X ∈ C, there is an exact sequence X Y Z with Y ∈ A.

The above result provides a counterpart to Theorem 3 of [Qui73]. Theorem 10.10 shows if C
has a heart structure, then the map C♡ → C factors as a transfinite composition of resolving and
op-resolving functors. The theorem of the heart for heart structures immediately follows:

Theorem 10.18 — Theorem of the heart. Let C be a bounded heart structure and denote C♡ its
heart. Then, the map

K(C♡) K(C)≃

is an equivalence, where on the left hand side, we have taken K-theory of the exact category C♡.

Proof. This follows from Theorem 10.10 combined with Theorem 10.16 using that K preserves
filtered colimits.

If C admits a heart structure, there is a subclass of bimodules M which are suitably adapted
to the weight structure. This is the following definition:

Definition 10.19 Let C be a heart category. A C-bimodule M is said to be a weighted bimodule
if for every X ∈ C≤0 and Y ∈ C≥0, the following mapping spectra

mapInd C(X,M(Y ))

is connective.

■ Example 10.20 Let R be a connective ring spectra. Recall Perf(R) admits a weight structure, as
it is the stable envelope of the additive Proj(R). A R-bimodule is weighted if and only for every
connective N and coconnective P , the spectrum

mapModR
(P,M ⊗R N)

is connective. Applied to N = R, one checks that M is necessarily connective, and this is also
sufficient by the combination of the following two facts: whenever P is coconnective and Q is
connective, map(P,Q) is itself connective and M⊗R− preserves connectivity when M is connective.
Hence, weighted R-bimodules are exactly connective R-bimodules. ■

In the situation where C admits a weight structure and M is a weighted bimodule, Lace(C,M)
inherits a heart structure whose heart is Lace(C♡,M), the full subcategory of pairs (X, f) with
X ∈ C♡. This is not quite a weight structure, because the mapping spectra in Lace(C♡,M) need
only be (−1)-connective; in fact, it is this fact that started the investigation which led to this
article, and the introduction of heart structures.
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Lemma 10.21 Let C be a heart category and M a weighted bimodule. Then, Lace(C,M) ad-
mits a heart structure given by the full subcategories Lace(C≥0,M) and Lace(C≤0,M) fibered
respectively over C≥0 and C≤0

Proof. Clearly, Lace(C≥0,M) and Lace(C≤0,M) are closed under retracts and extensions in
Lace(C,M), the former under pushouts and the latter under pullbacks.

If (Z, h : Z → M(Z)) is an object Lace(C,M), then there exists a weight decomposition
X → Z → ΣY , i.e. an exact sequence of C with X ∈ C≤0 and Y ∈ C≥0. We have two diagrams

Z M(Z) X M(X)

ΣY ΣM(Y ) Z M(Z)

h

p M(p) i M(i)

h

which it suffices to fill via the dotted arrows to get (iii) of Definition 10.7. For the left hand side,
we ought to show that the image of the map

map(ΣY,ΣM(Y )) p∗

−→ map(Z,ΣM(Y ))

contains M(p)◦h. The cofiber of this map is exactly map(X,ΣM(Y )) which is 1-connective. Hence
the above map is essentially surjective on π0 providing the wanted dotted arrow. A dual argument
deals with the other square.

Remark 10.22 In the situation of the previous lemma, if the heart structure on C is in fact
a weight structure — equivalently, the exact structure C♡ is split-exact — then Lace(C,M)
verifies the following weaker version of axiom (ii) of a weight structure:

If (X, f : X →M(X)) and (Y, g : Y →M(Y )) with X ∈ C≤0 and Y ∈ C≥0, then

MapLace(C,M)((X, f), (Y, g))

is (−1)-connective.
This can be checked using the explicit formula for mapping spaces of lax-equalizers [NS17,

Proposition II.1.5.(ii)].

Applying Theorem 10.18 to this situation, we have the following:

Corollary 10.23 Let C be a bounded heart structure and M a weighted bimodule. Denote
Lace(C♡,M) the full subcategory of Lace(C,M) fibered over C♡. Then, there is an equivalence:

K(Lace(C♡,M)) K(Lace(C,M))≃

In particular, when the heart structure on C is a weight structure, the Yoneda embedding is
one such weighted C-bimodule. Hence, the previous Corollary specifies to the following:

Theorem 10.24 — Theorem of the heart for KEnd. Let C be a stable category equipped with a
bounded weight structure. Then, there is an equivalence

K(End(C♡)) K(End(C))≃

We finish this section by leveraging Corollary 10.23 to show that if C has a bounded heart
structure, then K(Lace(C,M)) commutes with sifted colimits taking values in weighted bimodules
M . This kind of argument plays a key role in the proof of the Dundas-Goodwillie-McCarthy
theorem (see [DGM13] for an account of this theorem in the setting of connective ring spectra),
and will be used in a future article to provide a new proof of this theorem in the context of stable
categories, without referring to ring spectra.
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Proposition 10.25 Let C be a bounded heart category, then when restricted to the full subcate-
gory spanned by weighted bimodules, the functor K(Lace(C,−)) preserves sifted colimits.

Proof. Combining Lemma 10.21 and Theorem 10.18, we see that in the case where the sifted
colimit has values in weighted bimodules, it suffices to prove that K(Lace(C♡,M)) commutes with
sifted colimits. Note also that weighted bimodules are closed under colimits in Bimod(C) so this
colimit is also computed therein.

Recall that Ω∞ : Sp≥0 → S preserves sifted colimits by [Lur17a, 1.4.3.9] hence it suffices to
show the result for the space-valued delooped K-theory. Instead of the Q-construction, we will use
the description of this space as the geometric realization of the core of the S•-construction, thanks
to [Bar13, Theorem 3.10]. Since geometric realizations preserve colimits, it suffices to show that
each ι Sn Lace(C♡,−) preserves sifted colimits of weighted bimodules.

As a (necessary) warm-up, let us treat the first non-trivial case, n = 1, where we ought to show
that ιLace(C♡,M) preserves sifted colimits in weighted M . We claim that for a fixed X ∈ C♡,
the space MapInd C(X,M(X)) commutes with sifted colimits in weighted M . Indeed, this is clear
at the level of the mapping spectra because X is compact in Ind C, and as we have already used
Ω∞ : Sp≥0 → S preserves sifted colimits, so when M is weighted, we have the first claim.

But since ιLace(C♡,M) is fibered over such spaces by 3.13, this extends to the whole space.
Indeed, the unstraightening of a functor is its lax-colimit and lax-colimits commute with sifted
colimits (combine the formula of [GHN17, Definition 2.9] and the fact that sifted colimits of spaces
commute to products).

Recall that Sn(Lace(C♡,M)) is the category of the following diagrams:

0 (X1,1, f1,1) (X1,2, f1,2) ... (X1,n, f1,n)

0 (X2,2, f2,2) ... (X2,n, f2,n)

... ... ...

0 (Xn,n, fn,n)

0

where (Xi,j , fi,j) ∈ Lace(C♡,M) and every square is exact. Of course, such a diagram is fully
determined by its first row but remark that not all first rows need to induce a diagram where every
object lies in Lace(C♡,M); in fact, this is already the case for C♡ in C.

Denote Sn(M) the induced bimodule on Sn(C), obtained by applying M to the diagrams
of the above shape, then the above category is none other than Lace(Sn(C♡), Sn(M)), viewed
as a full subcategory of Lace(Sn(C), Sn(M)). The arguments of the case n = 1 will conclude,
provided we can show that Sn(M) is still a weighted bimodule, i.e. for every object X := (Xi,j) ∈
Lace(Sn(C♡), Sn(M)) the mapping spectra map(X,Sn(M)(X)) is connective. Such a mapping
spectra is given by iterated pullbacks (because in C, the above diagrams are exactly equivalent to
the datum of the first row), hence we have to show that

map(X1,1,M(X1,1))×map(X1,1,M(X1,2)) ...×map(X1,n−1,M(X1,n)) map(X1,n,M(X1,n))
is connective, where all mapping spectra are taken in Ind C. All of the terms appearing in the
above are connective, so by induction, it suffices to show that every map(X1,i+1,M(X1,i+1)) →
map(X1,i,M(X1,i+1)) is surjective on π0. But X1,i ↪→ X1,i+1 has its cofiber in C♡ and M is exact
and weighted, which concludes.

10.3 A resolution theorem for THH
Our goal is to show that THH also satisfies the resolution theorem (and thus a theorem of the

heart) in the same setting that made it hold for K-theory in the previous section. For this, we will
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first need to extend our definition of THH to the laced-exact world, i.e. for bimodules of exact
categories.

Let us denote Bimod(Exact∞) the bicartesian unstraightening of the functor Exact∞ →
CAT∞ sending E to FunBiEx(Eop × E ,Sp). The category Bimod(Exact∞) contains TCatEx as
a full subcategory, which is exactly its pullback along the fully-faithful CatEx → Exact∞. Note
that this has simply thickened TCatEx, i.e. duplicated some fibers:

Lemma 10.26 Let E be an exact category and denote i : E → Stab(E) the canonical functor,
then restriction along iop × i induces an equivalence

FunBiEx(Stab(E)op × Stab(E),Sp) FunBiEx(Eop × E ,Sp)≃

In particular, Bimod(Stab(E)) is generated under filtered colimits by functors of the form
map(X,−)⊗map(−, Y ) where X,Y ∈ E and the mapping spectra are taken in Stab(E).

Proof. Remark that Stab(Eop) ≃ Stab(E)op because they have the same universal property:

FunEx(Eop, C) ≃ FunEx(E , Cop)op

≃ FunEx(Stab(E), Cop)op

≃ FunEx(Stab(E)op
, C)

if C is stable. It follows that the stable category PΣ(E) := FunEx(Eop,Sp) is the Ind-completion of
Stab(E). Then, we have

FunBiEx(Eop × E ,Sp) ≃ FunEx(E ,PΣ(E)) ≃ FunEx(Stab(E), Ind Stab(E))

where the right hand side is exactly Stab(E)-bimodules as wanted.

Definition 10.27 Let E be an exact category and M : Eop × E → Sp be a bi-exact functor, then,
we let

THH(E ,M) :=
∫ X∈E

M(X,X)

This extends THH to a functor Bimod(Exact∞)→ Sp which is still fiberwise-exact and trace-
invariant, for suitable generalizations of these definitions.

It follows from Lemma 10.26 that the behavior of a fiberwise filtered-colimit preserving invari-
ant is fully-determined by its values on bimodules who split as a tensor of a left module and a
right module. We now investigate the behaviour of THH on such objects. The result we prove is
a very general statement about coends, in the following situation.

Consider a subcategory C of Cat∞ and a presentably symmetric monoidal T ∈ C, such that if
f : C → D is a map in C, there is a natural adjunction

FunC(D, T ) FunC(C, T )
f∗

f!

where f∗ denotes the precomposition functor and f! its left adjoint (which need not be the left
Kan extension since we are working internally to C). Then, we have:

Proposition 10.28 Let M : Cop → T and N : D → T be maps of C and let f : C → D be a map
of of C. Then, f induces an equivalence in T :

α(f) :
∫ C

M ⊗ f∗(N)
∫ D

f!(M)⊗N≃

where the tensor is the symmetric monoidal structure of E , taken pointwise on functors.

Proof. Let us first explain what is the induced map: there is natural transformation id =⇒ f!f
∗
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which induces a natural transformation of functors, and finally a map of coend∫ C
M ⊗ f∗N −→

∫ C
f!f

∗(M)⊗ f∗N

Moreover, there is also a map∫ C
f!f

∗(M)⊗ f∗N −→
∫ D

f!(M)⊗N

induced by restricting the colimit along the induced TwAr(f). The composite is the wanted map.

Fix Z ∈ T , we will show that the wanted map is a T -equivalence by showing that α(f)∗ is an
equivalence:

α(f)∗ : Map(
∫ D

f!(M)⊗N,Z) −→ Map(
∫ C

M ⊗ f∗N,Z)

The contravariant side of Map sends colimits to limits, and so we are equivalently trying to show
that: ∫

D
Map(f!(M)⊗N,Z) −→

∫
C

Map(M ⊗ f∗N,Z)

is an equivalence. Using that T is presentably symmetric monoidal and denoting Map the internal
mapping functor, we can rewrite the above mapping spaces as follows:∫

D
Map(f!(M),Map(N,Z)) −→

∫
C

Map(M,f∗Map(N,Z))

where Map(N,Z) is the functor sending X ∈ D to Map(N(X), Z) ∈ T (so that the commutation
with f∗ on the right hand side is legitimate).

Now by definition of the space of natural transformations, we can further rewrite both terms
as:

Nat(f!(M),Map(N,Z)) −→ Nat(M,f∗Map(N,Z))
and that by construction, the map we consider is the one of the adjunction between f! and f∗, so
it is an equivalence as wanted.

Combining Lemma 10.26 and Proposition 10.28, we get in particular:

Corollary 10.29 Let C,D be exact categories and M : Cop ×D → Sp be a (C,D)-bimodule, then
any exact f : C → D induces an equivalence:

THH(C, (id×f)∗M) ≃−−→ THH(D, (fop × id)!M)

where f! denotes left Kan extension followed by taking the exact approximation.

Note that we can also describe (fop × id)!M as the Stab(D)-bimodule left Kan extended from
Stab(C)op × Stab(D) along Stab(f)op × id, and this description need not involve further exact
approximation since this is automatic for exact functors between stable categories.

Theorem 10.30 Let E be an exact category, M ∈ Bimod(E) and denote i : E → Stab(E) the
canonical functor. Then, i induces a map in Bimod(Exact∞) such that

THH(E ,M) ≃−→ THH(Stab(E),Stab(M))

is an equivalence.

Proof. Let M be an exact functor Eop × E → Sp and denote Stab(M) its unique extension to
an exact functor Stab(E)op × Stab(E) → Sp. Write i : E → Stab(E) for the exact inclusion and
consider M̂ := Stab(M)(i(−),−) which is a (E ,Stab(E))-bimodule13. By the above proposition, it
holds that i induces an equivalence

THH(E , (id×i)∗M̂) ≃−−→ THH(Stab(E), (iop × id)!M̂)
13Equivalently, M̂ := (id ×i)!M
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Of course, (id×i)∗M̂ is just M and on the right hand side, (iop × id)!M̂ is a Stab(E)-bimodule,
so it is fully determined by its restriction to Eop × E , which is M by fully-faithfulness of i. Hence
(iop × id)!M̂ ≃ Stab(M), which concludes.

In particular, since Stab(C♡) ≃ C for any heart category C, we have:

Corollary 10.31 — Resolution theorem for THH. If C is a heart category with heart C♡, then the
map THH(C♡)→ THH(C) is an equivalence.

We can now prove:

Proposition 10.32 Let C be a heart category, then THH(Lace(C,M)) commutes with sifted
colimits in weighted M .

Proof. Since C is a heart category and M is weighted, Lace(C,M) is a heart category with heart
Lace(C♡,M), hence it suffices to show that THH(Lace(C♡,M)) has the wanted property. We can
realize this spectrum as the following geometric realization:∣∣∣Stab Lace

(
(Lace(C♡,M), id)([•],∗)

)∣∣∣
where Stab Lace is a fiberwise-stabilized version of Σ∞

+ Lace≃, which is given pointwise by the
colimit

Stab Lace(C,M) := colim
X∈ι C

M(X,X)

It suffices to prove that each simplicial layer commutes with sifted colimits in M . For n = 0, this
is Stab Lace(Lace(C♡,M), id), which is the colimit

colim
(X,f)∈Lace≃(C♡,M)

mapLace(C♡,M)((X, f), (X, f))

By [NS17, Proposition II.1.5.(ii)], we have that the above mapping spectra of Lace(C♡,M) is given
by the equalizer

E(X, f) := Eq
(

mapC(X,X) mapInd(C)(X,M(X))
f◦(−)

M(−)◦f

)

By Lemma 3.13, Lace≃(C♡,M) is fibered over ι C♡ hence we can split the colimit over Lace(C♡,M)
in two successive colimits, so that

Stab Lace(Lace(C♡,M), id) ≃ colim
X∈C♡

colim
f∈Map(X,M(X))

E(X, f)

It suffices to prove for a fixed X ∈ C♡ that colimf∈Map(X,M(X)) E(X, f) commutes with sifted
colimits in M . Passing to the colimit over Map(X,M(X)), there is an equalizer diagram of
functors TCCatEx → Sp (the variable being denoted M):

colim
f∈Map(X,M(X))

E(X, f) colim
f∈Map(X,M(X))

map(X,X) colim
f∈Map(X,M(X))

map(X,M(X))

Since the category of functors TCCatEx → Sp is stable, it suffices to prove that the right side of
the diagram has the wanted property and finally, colimits being computed pointwise, that both
colimf∈Map(X,M(X)) map(X,X) and colimf∈Map(X,M(X)) map(X,M(X)) commutes with sifted col-
imits in weighted M . These are constant in f so it suffices to show that the indexing space
Map(X,M(X)) does: but indeed, Ω∞ : Sp≥0 → S is sifted-colimit preserving and map(X,M(X))
is connective since X ∈ C♡.

For higher n ≥ 0, a similar argument applies replacing C by (C♡)[n], replacing Map(X,M(X))
by Map(Xn,M(X0)) where X := (Xi) is a chain in C♡ and finally, replacing E(X, f) by the
mapping spectra in Lace(C♡,M)([n],∗) which is a more complicated limit than an equalizer but
nonetheless finite, so that the argument still holds.
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11 The local structure of localizing invariants
11.1 Weighted bimodules and analycity

Let C be a heart category, in §10 we have defined a weighted C-bimodule to be to a C-bimodule
M : Cop ×C → Sp such that the restriction along (C♡)op ×C♡ lands in Sp≥0. Denote Bimod(C)≥0
the full subcategory of weighted bimodules in Bimod(C) ≃ FunBiEx(Cop × C,Sp). Note that it is
closed under colimits, hence we will be able to use Theorem 9.19 relative to this full subcategory.

We will need the following Lemma:

Lemma 11.1 Let (C,M) be a laced category and write p : Lace(C,M)→ C for the canonical map
and R for its Ind-right adjoint. Then, there is an equivalence of C-bimodules

Ind(p) ◦R ≃ id⊕ (M ◦ Ind(p) ◦R)

Moreover, if C has a heart structure such that M is connective, then M ◦ Ind(p) ◦ R is also a
connective C-bimodule and thus so is the fiber fib(Ind(p) ◦R→ id).

Proof. Recall that p has a section, i := Lace(C, 0) : C → Lace(C,M) induced by 0 → M . The
Ind-right adjoint Q of i is easy to describe: it sends a map f : X →M(X) to its fiber (computed
in Ind(C)). In particular, we get a canonical exact sequence Q→ Ind(p)→M ◦ Ind(p).

The Ind-right adjoint R of p is a section of Q, hence the first map in the sequence induces
a section of the canonical Ind(p) ◦ R → id after precomposing by R. Since Bimod(C) is stable,
id must split as a direct summand of Ind(p) ◦ R and the complementary summand is necessarily
M ◦ Ind(p) ◦R using the above exact sequence. This proves the first part.

For the second part, we remark that a bimodule N : Ind(C)→ Ind(C) is connective if and only
if its image is contained in the category of functors Cop → Sp whose restriction to the heart is
connective. Indeed, Ind(C) is generated under colimits by C♡, and connective bimodule send C♡

to the aforementioned subcategory, which is closed under colimits in Ind(C). In particular, this
description implies that Bimod(C)≥0 is a left-ideal (i.e. post-composing by a connective bimodule
any bimodule makes it connective) which suffices by hypothesis.

Recall that by definition, if F : CatEx → E , then we have denoted F cyc or F red the fiber
fib(F (Lace(C,M) → F (C)), i.e. the fiberwise-reduction of the left Kan extension of F along the
cotangent complex CatEx → TCatEx.

Proposition 11.2 Let C be a heart category. The functors Kcyc(C,−) : Bimod(C) → Sp and
Σ THHcyc(C,−) : Bimod(C)→ Sp are rigid in the sense of Definition 9.8.

Proof. We have made the above functors reduced by fiat. K-theory always lands in connective
spectra and Proposition 10.25 shows Kcyc preserves sifted colimits of weighted bimodules.

We now turn to THHcyc. Proposition 10.32 shows preservation of sifted colimits of weighted
bimodules so we are left with showing that Σ THHcyc(C,M) is connective if M is weighted. Recall
from the proof of 8.1 that we have:

THHlace(C,M) := Eq
(

THH(C, pM ◦RM ) THH(C,M ◦ pM ◦RM )
)

where pM : Lace(C,M)→ C is the canonical map and RM denotes its Ind-right adjoint. By Lemma
11.1, we have

THH(C, pM ◦RM ) ≃ THH(C)⊕ THH(C,M ◦ pM ◦RM )
and the composite M ◦ pM ◦ RM is a weighted bimodule. In particular, Theorem 10.30 implies
that the second summand THH(C,M ◦ pM ◦ RM ) is a connective spectra, using the formula of
the Definition. Hence, THHcyc is given by an equalizer of connective spectra, hence at worst
(−1)-connective. This shows that Σ THHcyc(C,−) is rigid as wanted.

Since Σ THHcyc(C,−) is rigid, it coincides with the limit of its Taylor tower by Theorem 9.19.
But then, this also must hold for THHcyc(C,−) because the shift is invertible and commutes with
all possible operations: taking derivatives and passing to the limit of the tower.
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Corollary 11.3 Let C be a heart category. The functors Kcyc(C,−) : Bimod(C) → Sp and
THHcyc(C,−) : Bimod(C) → CycSp converge to the limit of their Goodwillie-Taylor tower for
M 1-connective.

11.2 The Main Result
Assembling Corollary 11.3 and Corollary 8.7, we get the following result:

Theorem 11.4 Let (C,M) be a bounded heart category and M such that ΩM is a weighted
bimodule. Then, there is a cartesian square of spectra:

Klace(C,M) TClace(C,M)

K(C) TC(C)

and the common fiber of the vertical maps is given by TR(C,M).

We note that in the current version of this text, this result depends of Theorems 7.18, 7.25,
7.28 and 8.4 for which we did not give a proof but only refered to [HNS25].

This theorem has a famed precedent, proven by Dundas-Goodwillie-McCarthy. In [DGM13],
they prove a different statement which applies to general nilpotent extensions of connective ring
spectra but specializes in the split square-zero case to the Corollary below. Let us explain how to
deduce this split square-zero version it from ours; we will not explain the nilpotent case as it is not
a straightforward consequence of the above theorem and requires more work.

Recall that if R is connective and M is a connective R-module, then Example 3.10 shows:

Lace(Perf(R),ΣM ⊗R −) ≃ Perf(R⊕M)

Moreover, Perf(R) does indeed carry a heart structure, in fact it is a weight structure, whose heart
is Proj(R), and thanks to the shift, weighted bimodules M exactly correspond to (−1)-connective
R-bimodules. In particular, we get

Corollary 11.5 — Dundas-Goodwillie-McCarthy. Let R be a connective ring spectrum and M a
connective R-bimodule. There is a cartesian square of spectra:

K(R⊕M) TC(R⊕M)

K(R) TC(R)

where R⊕M denotes the (split) square-zero extension of R by M .

Remark that the above discussion with C having a weight structure, but not necessarily of the
form Perf(R), also recovers the split case of the main theorem of [ES21].

11.3 Examples of heart categories
11.3.1 Stacks with the derived resolution property

To fill the above discussion with more examples of heart categories C, whose heart E is suffi-
ciently small that it admits functors Eop × E → Sp≥0. Let us recall a result of [Sau23b].

For a quasi-compact quasi-separated scheme X, we denote Perf(X) the category of compact
OX -modules.

We call a scheme X divisorial if it has an ample family of line bundles as defined in [TT90,
Definition 2.1] (see also [BGI71, Exposé II, 2.2.3]). For instance, quasi-projective varieties over a
field are divisorial by Example 2.1.2 of [TT90]. We will denote Vect(X) the subcategory14 of such
complexes concentrated in degree 0.

14This is in fact a 1-category.
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Proposition 11.6 — Proposition 2.18 of [Sau23b]. Let X be a divisorial scheme. Then, the
category Perf(X) has a heart structure whose heart is Vect(X).

Thanks to Dhyan Aranha and Adeel Khan, we realized that the above statement is actually
significantly more general, and applies to quasi-coherent quasi-separated derived Artin stack with
the derived resolution property, we set out to prove it. Recall the following definition from [Kha21,
Definition 1.32].

Definition 11.7 Let X be a quasi-coherent quasi-separated derived Artin stack. We say that X
has the resolution property if for every quasi-coherent module F ∈ QCoh(X ), there exists a
small family Eα of locally free sheaves and a morphism⊕

α

Eα ↠ F

which is surjective on π0.

We say that X has the derived resolution property if this holds more generally for quasi-
coherent complexes F .

The derived property is stronger than the non-derived. Remark that if π0(F) is supposed to
be of finite type, then one can equivalently ask for a family (Eα) composed of exactly one finite
locally free sheaf.

Definition 11.8 — Aranya-Khan-Ravi. Let C be a stable category. A resolving structure on C is
the datum of a sequence

C0 = C≤0 ⊂ C≤1 ⊂ ... ⊂ C≤∞

of subcategories of C such that

(i) The full subcategory C0 ⊂ C is closed under finite direct sums; in particular, it is additive.
The full subcategory C≤∞ ⊂ C is closed under finite colimits and extensions; in particular,
it is prestable (see [Lur18, Cor. C.1.2.3]).

(ii) For every object X ∈ C, there exists an integer i ≥ 0 such that ΣiX ∈ C≤∞

(iii) Suppose given an exact sequence X → Y → Z in C. If X,Y ∈ C≤n for some n ≥ 0, then
Z ∈ C≤n+1. If Y,Z ∈ C≤n, for some n ≥ 0, then X ∈ C≤n .

(iv) For every object X ∈ C≤n, where n ≥ 0, there exists an exact sequence

H → X → Y

where H ∈ C0 and D ∈ C≤n.

Lemma 11.9 Let C be a stable category and suppose that (C≥0, C≤0) are two full subcategories
such that C≥0, C≤0 are closed under extensions, C≥0 under finite colimits and C≤0 under finite
limits, and further, every object lies in C≥−m for some m ≥ 0.

Then the following are equivalent:

(1) For every X ∈ C, there exists an exact sequence Y → X → Z such that Y ∈ C≤0 and
Z ∈ C≤1. In particular, the pair of categories determines a heart structure on C.

(2) For every X ∈ C≥0, there exists an exact sequence H → X → Z such that H ∈ C[0,0] :=
C≤0 ∩ C≥0 and Z ∈ C≥1.

Proof. (1) =⇒ (2) follows from Lemma 10.9.

By induction, (2) =⇒ (1) follows if, assuming (2), we can provide weight decompositions for
every X ∈ C≥−1 = ΩC≥0. Using the hypothesis for ΣX, we have a sequence:

Y −→ ΣX −→ Z
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with Y ∈ C[0,0] and Z ∈ C≥1. We can apply (2) again to ΩZ, giving a sequence

Y ′ −→ ΩZ −→ Z ′

again with the according hypotheses on Y ′ ∈ C[0,0] and Z ′. We can thus form the following diagram:

0 ΩY ΩY

ΩZ ′ Y ′ ×ΩZ Y X

ΩZ ′ Y ′ ΩZ

where we looped the first sequence and rotated the second. In particular, by closure under extension
of C≤0, we have that Y ′ ×ΩZ Y ∈ C≤0. It follows that

Y ′ ×ΩZ Y −→ X −→ Z ′

is an exact sequence as wanted.

The above lemma means that given a heart structure where every objects is bounded below in
weight, the category C≤0 is unnecessary for the datum, as it can be recovered as the closure under
extensions and limits of whatever terms appear on the left hand side of the decomposition

Proposition 11.10 The datum of a resolving structure on C determines a heart structure on C
which is bounded below. If further C≤∞ = ∪nC≤n, then the structure is bounded.

Proof. We define C≥0 = C≤∞ and C≤0 to be the closure under limits and extensions of C0 in
C. Remark that by (ii) of the definition, the extra condition of the above lemma is verified. In
particular, to show that the structure is a heart structure, it suffices to provide decompositions for
objects in non-negative weight, which we have by (iv).

To check that the structure is bounded, remark that every object is generally bounded below by
(ii). Assuming the extra condition, every X ∈ C≤∞ becomes automatically bounded above as it can
be obtained via finitely many resolutions with terms in the heart (whose delooping automatically
land in C≤0.

Proposition 11.11 Suppose C is a bounded heart structure, then

C♡ ⊂ ... ⊂ C[0,n] ⊂ ... ⊂ C≥0

defines a resolving structure on C such that C≥0 = ∪nC[0,n].

Proof. Condition (i) is straightforward from the definition. Condition (ii) follows from the
boundedness. Condition (iii) is subsumed by Lemma 10.9. Condition (iv) is given by the resolution
of the definition.

Given a quasi-coherent quasi-separated derived Artin stack X , we write Perf(X ) for the category
of perfect complexes of OX -modules and Vect(X ) for the full subcategory spanned by those which
are locally-free of finite type.

Theorem 11.12 Let X be a quasi-coherent quasi-separated derived Artin stack with the derived
resolution property. Then Perf(X ) has a bounded heart structure with heart Vect(X ).

Proof. By the above, to prove that Perf(X ) carries a heart structure with heart Vect(X ), it
suffices to produce a resolving structure on Perf(X ) with C0 := Vect(X ). We let Cn denote the full
subcategory of Perf(X ) spanned by complexes of non-negative Tor-amplitude ≤ n, and C∞ their
colimit, i.e. the full subcategory of complexes of finite non-negative Tor-amplitude. Properties (i)
and (iii) holds without assumptions on X , and similarly for property (ii) which follows from the
fact that every perfect complex has bounded Tor-amplitude.
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For property (iv), if X ∈ Perf(X ) is of finite non-negative Tor-amplitude, then the resolution
property implies that there is a morphism Y → X with Y ∈ Vecttf (X ) which is surjective on π0,
so in particular, the kernel has again finite non-negative Tor-amplitude, which concludes.

In particular, we deduce from the theorem of the heart for K-theory, see Theorem 10.18, the
following statement:

Corollary 11.13 Let X be a quasi-coherent quasi-separated derived Artin stack with the derived
resolution property. Then, the map

K(Vect(X )) K(Perf(X ))≃

is an equivalence.

11.3.2 Neeman’s approximable categories

We adapt the definition of Neeman in [Nee21a] to the higher categorical world.
Definition 11.14 Let C be a stable category which is generated by a single compact object (in
particular presentable). We say that C is approximable if there is a compact generator G ∈ Cω,
a t-structure (C≥0, C≤0) and an integer n ≥ 0 such that

(i) ΣnG ∈ C≥0 i.e. G is (−n)-connective and Σ−nG is (left)-orthogonal to C≥0 the connective
objects, i.e. for every X ∈ C≥0,

mapC(Σ−nG,X)

is 1-connective.

(ii) For every connective F ∈ C≥0, there is an exact sequence

E −→ F −→ D

with D ∈ C≥1 1-connective and E ∈ ⟨G⟩[−n,n]
n , where ⟨G⟩[−n,n]

n is the smallest subcategory
of C, containing ΣiG for i ranging in the integer interval [−n, n] and stable under direct
sums, retracts and extensions.

A priori, this sounds like a terrible definition: there may be multiple ways to exhibit C as
an approximable category, depending on the choice of t-structure and of compact generator, but
Neeman shows that actually, it is surprisingly canonical. Relatedly, we have the following:

Theorem 11.15 Let C be approximable. Then, the category Cω of compact objects admits a heart
structure whose heart H has the following property: there exists a n ≥ 0 such that, for every
X,Y ∈ H, mapC(X,Y ) is bounded below by n.

Proof. The heart structure is actually adjacent to the t-structure (and so, as in Bondarko, they
determine one another). For the sake of readability, we let C be the category of compact objects
and Ind(C) the approximable category. Denote C≥0 the category of compact objects which are
connective in the t-structure on Ind(C).

For every X ∈ C, there is n ≥ 0 such that ΣnX ∈ C≥0. This holds for G by assumption and
so for every object in the smallest idempotent-complete category generated by G in C. But G is
generating so this is all of G.

In particular, we are in the situation of Lemma 10.9 so it suffices to provide resolutions for
objects in C≥0. Given (ii), this is clearly the case hence we find that we can choose the heart
structure to be such that C♡ is ⟨G⟩[−n,n]

n and C≤0 the closure under finite limits and extensions of
the above.

To conclude, it suffices to check that mapping spectra in ⟨G⟩[−n,n]
n are bounded below. But we

also have that
map(Σ−nG,X)

is 1-connective for every object in C≥0, so in particular in the heart. Given the definition of
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⟨G⟩
[−n,n]
n , this implies that for every H,H ′ ∈ C♡

map(H,H ′)

is 1− (2n+ 1) = −2n connective (where the 2n+ 1 comes from the size of [−n, n]).

Remark 11.16 In particular, such hearts are quite far from being stable: they live in the right-
orthogonal complement of CatEx within Exact∞. This means that there are no non-zero exact
functor from a stable category to them.

It is a theorem of Bondal-van den Bergh in [BvdB03] that if X is a qcqs scheme then Dqc(X) is
compactly-generated by one object so that it is legitimate to wonder whether Dqc(X) is compactly
generated. If X is actually separated, then Neeman has shown that Dqc(X) is in fact approximable.
If X is separated of finite type over a noetherian ring, this is [Nee21b, Theorem 5.8] and the
generalization is [Nee21c, Example 3.6]. In consequence:

Corollary 11.17 If X is a quasi-compact separated scheme, then there is a bounded heart struc-
ture on the stable category Perf(X) such that the mapping spectra of Perf(X)♡ are uniformly
bounded below, i.e. there is an integer n ≥ 0 such that:

mapPerf(X)(X,Y ) is (−n) connective for every X,Y ∈ Perf(X)♡

References
[ACB22] Omar Antolín-Camarena and Tobias Barthel. Chromatic fracture cubes. Proceedings of the

2019 Equivariant Topology and Derived Algebra Conference, 2022.
[AKN24] Benjamin Antieau, Achim Krause, and Thomas Nikolaus. On the K-theory of Z/pn. Preprint,

2024.
[Alm78] Gert Almkvist. K-theory of endomorphisms. Journal of Algebra, 55(2):308–340, 1978.
[AMGR17] David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum. The geometry of the cyclotomic trace.

Preprint, 2017.
[AN20] Benjamin Antieau and Thomas Nikolaus. Cartier modules and cyclotomic spectra. Journal

of the American Mathematical Society, 34:1, 02 2020.
[Bar13] Clark Barwick. On the Q construction for exact quasicategories. Available on the author’s

webpage, 2013.
[Bar15] Clark Barwick. On exact ∞-categories and the theorem of the heart. Compositio Mathematica,

151(11):2160 –– 2186, 2015.
[Bar16] Clark Barwick. On the algebraic K-theory of higher categories. Journal of Topology, Volume

9:245 – 357, March 2016. https://doi.org/10.1112/jtopol/jtv042.
[BGI71] Pierre Berthelot, Alexander Grothendieck, and Luc Illusie. (SGA6) Théorie des Intersections

et Théorème de Riemann-Roch, volume 225 of Lecture notes in mathematics. Springer-Verlag,
1971.

[BGT13] Andrew J. Blumberg, David Gepner, and Goncalo Tabuada. A universal characterization of
higher algebraic K-theory. Geometry & Topology, 17(2):733 – 838, 2013.

[BGT14] Andrew J. Blumberg, David Gepner, and Goncalo Tabuada. Uniqueness of the multiplicative
cyclotomic trace. Advances in Mathematics, 260:191–232, 2014.

[BHLS23] Robert Burklund, Jeremy Hahn, Ishan Levy, and Tomer Schlank. K-theoretic counterexamples
to Ravenel’s telescope conjecture. Preprint, 2023.

[Bon10] Mikhail Bondarko. Weight structures vs. t-structures; weight filtrations, spectral sequences,
and complexes (for motives and in general). Journal of K-theory, 6(3):387–504, 2010.

[BvdB03] Alexei Bondal and Michel van den Bergh. Generators and representability of functors in
commutative and noncommutative geometry. Moscow Mathematical Journal, 3(1):1–36, 2003.

[CDH+23a] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus Land, Kris-
tian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermitian K-theory for
stable ∞-categories I: Foundations. Selecta Mathematica, 29(1):1 – 269, 2023.

103

https://doi.org/10.1112/jtopol/jtv042


[CDH+23b] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus Land, Kris-
tian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermitian K-theory for
stable ∞-categories II: Cobordism categories and additivity. Preprint, 2023.

[CDH+23c] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus Land, Kris-
tian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermitian K-theory for
stable ∞-categories III: Grothendieck-witt groups of rings. Preprint, 2023.

[CDH+23d] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus Land, Kris-
tian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermitian K-theory for
stable ∞-categories IV: Poincaré motives and Karoubi-Grothendieck-Witt groups. Upcoming,
2023.

[DGM13] Bjorn Dundas, Tom Goodwillie, and Randy McCarthy. The local structure of algebraic K-
theory, volume 18. Springer-Verlag London, 2013. Algebra and Applications.

[DKNP22] Emanuele Dotto, Achim Krause, Thomas Nikolaus, and Irakli Patchkoria. Witt vectors with
coefficients and characteristic polynomials over non-commutative rings. Compositio Mathe-
matica, 158(2):366–408, February 2022.

[DKNP23] Emanuele Dotto, Achim Krause, Thomas Nikolaus, and Irakli Patchkoria. Witt vectors with
coefficients and tr. Preprint, 2023.

[DM94] Bjørn Ian Dundas and Randy McCarthy. Stable K-theory and topological Hochschild homol-
ogy. Annals of Mathematics, 140(3):685–701, 1994.

[Efi24] Alexander I. Efimov. K-theory and localizing invariants of large categories. Preprint, 2024.
[ES21] Elden Elmanto and Vladimir Sosnilo. On Nilpotent Extensions of ∞-Categories and the

Cyclotomic Trace. International Mathematics Research Notices, 2022(21):16569–16633, 07
2021.

[GHN17] David Gepner, Rune Haugseng, and Thomas Nikolaus. Lax colimits and free fibrations in
∞-categories. Documenta Mathematica, 22:1225 – 1266, 2017.

[Gla16] Saul Glasman. Day convolution for ∞-categories. Mathematical Research Letters, 23(5):1369–
1385, 2016.

[Goo90] Tom Goodwillie. Calculus. I. The first derivative of pseudoisotopy theory. K-Theory 4, 1:1 –
27, 1990.

[Goo91] Tom Goodwillie. Calculus. II. Analytic functors. K-Theory 5, 4:295 – 332, 1991.
[Goo03] Tom Goodwillie. Calculus. III.Taylor series. Geometry and Topology, 7:645 –– 711, 2003.
[Heu15] Gijs Heuts. Goodwillie Approximations to Higher Categories. Memoirs of the American

Mathematical Society, 272, 10 2015.
[HHLN20] Rune Haugseng, Fabian Hebestreit, Sil Linskens, and Joost Nuiten. Two-variable fibrations,

factorisation systems and ∞-categories of spans. Preprint, 2020.
[HLS23] Fabian Hebestreit, Andrea Lachmann, and Wolfgang Steimle. The localisation theorem for

the K-theory of stable ∞-categories. Proceedings of the Royal Society of Edinburgh, page 1–37,
2023.

[HNP19] Yonatan Harpaz, Joost Nuiten, and Matan Prasma. Tangent categories of algebras over
operads. The Israel Journal of Mathematics, 234:691 – 742, 2019.

[HNS23] Yonatan Harpaz, Thomas Nikolaus, and Jay Shah. The real cyclotomic trace map. In prepa-
ration, 2023.

[HNS24] Yonatan Harpaz, Thomas Nikolaus, and Victor Saunier. Trace methods for stable categories
i: The linear approximation of algebraic k-theory. Preprint, 2024.

[HNS25] Yonatan Harpaz, Thomas Nikolaus, and Victor Saunier. Higher derivatives of localizing in-
variants. In preparation, 2025.

[HR23] Kathryn Hess and Nima Rasekh. Shadows are bicategorical traces. Preprint, 2023.
[HSH21] Fabian Hebestreit, Wolfgang Steimle, and with an appendix by Yonatan Harpaz. Stable

moduli space of hermitian forms. Preprint, 2021.
[HSS17] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. Higher traces, noncommutative motives

and the categorified Chern character. Advances in Mathematics, 309:97 –– 154, 2017.
[HY17] Asaf Horev and Lior Yanovski. On conjugates and adjoint descent. Topology and its Applica-

tions, 232:140–154, 2017.
[Kal15] Dmitry Kaledin. Trace theories and localization. Stacks and categories in geometry, topology,

and algebra, 643:227 —- 262, 2015.

104



[Kel98] Bernhard Keller. Invariance and localization for cyclic homology of dg algebras. Journal of
Pure and Applied Algebra, 123:223 –– 273, 1998.

[Kha21] Adeel A. Khan. K-theory and G-theory of derived algebraic stacks, 2021. Accessible at
https://arxiv.org/pdf/2012.07130.pdf.

[Kle23] Jona Klemenc. The stable hull of an exact ∞-category. Homology, Homotopy and Applications,
24:195–220, 2023.

[KMN23] Achim Krause, Jonas McCandless, and Thomas Nikolaus. Polygonic spectra and TR with
coefficients. Preprint, 2023.

[KNP24] Achim Krause, Thomas Nikolaus, and Phil Pützstück. Sheaves on manifolds, 2024. Accessible
at one of the author’s webpage.

[Kuh04] Nicholas J. Kuhn. Tate cohomology and periodic localization of polynomial functors. Inven-
tiones Mathematicae, 157(2):345–370, 2004.

[LM12] Ayelet Lindenstrauss and Randy McCarthy. On the Taylor tower of relative K-theory. Geom-
etry & Topology, 16(2):685 – 750, 2012.

[LNS25] Jordan Levin, Guglielmo Nocera, and Victor Saunier. A model for the assembly map of
bordism-invariant functors. In preparation, 2025.

[LT23] Markus Land and Georg Tamme. On the K-theory of pushouts. Preprint, 2023.
[Lur08] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2008.
[Lur17a] Jacob Lurie. Higher Algebra. Princeton University Press, 2017.
[Lur17b] Jacob Lurie. Lecture notes for Fall 2017/Spring 2018 Thursday Seminar (Unstable

Chromatic Homotopy Theory), 2017. Accessible at https://www.math.ias.edu/~lurie/
ThursdayFall2017.html.

[Lur18] Jacob Lurie. Spectral Algebraic Geometry. Available at the author’s webpage, 2018.
[McC01] Randy McCarthy. Dual calculus for functors to spectra, volume 271 of Contemp. Math., pages

183—-215. American Mathematical Society, 2001.
[McC23] Jonas McCandless. On curves in K-theory and TR. Journal of the European Mathematical

Society, 2023.
[Nee21a] Amnon Neeman. Approximable triangulated categories. Representations of Algebras, Geom-

etry and Physics, Contemp. Math., 769:111–155, 2021.
[Nee21b] Amnon Neeman. Strong generators in Dperf(X) and Db

coh(X). Annals of Mathematics. Second
Series, 193(3):689–732, 2021.

[Nee21c] Amnon Neeman. Triangulated categories with a single compact generator and a Brown rep-
resentability theorem. arxiv:1804.02240, 2021.

[Nik16] Thomas Nikolaus. Stable ∞-operads and the multiplicative Yoneda lemma. Preprint, 2016.
[Nik18] Thomas Nikolaus. Topological Hochschild homology of stable ∞-categories, chapter pages 857-

865. Arbeitsgemeinschaft: Topological Cyclic Homology, 2018.
[NS17] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Mathematica, 221,

2017.
[Pan14] Matthew Pancia. The Goodwillie tower of free augmented algebras over connective ring

spectra. University of Texas Libraries, 2014.
[PS13] Kate Ponto and Michael Shulman. Shadows and traces in bicategories. J. Homotopy Relat.

Struct., 8:151–200, 2013.
[QS22] J.D. Quigley and Jay Shah. On the parametrized tate construction. Preprint, 2022.
[Qui73] Daniel Quillen. Higher algebraic K-Theory: I. Algebraic K-theory (Proc. Conf., Northwestern

Univ., Evanston, Ill., 1976), 1973.
[Ram24a] Maxime Ramzi. On the Dundas-McCarthy theorem and a universal shadow. In preparation,

2024.
[Ram24b] Maxime Ramzi. Separability in homotopy theory and topological Hochschild homology. Avail-

able at the author’s webpage, 2024.
[Ras18] Sam Raskin. On the Dundas-Goodwillie-McCarthy theorem. Available at the author’s webpage,

2018.
[RSW25] Maxime Ramzi, Vladimir Sosnilo, and Christoph Winges. Every motive is the motive of a

stable ∞-category. Preprint, 2025.

105

https://arxiv.org/pdf/2012.07130.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/sheaves-on-manifolds.pdf
https://www.math.ias.edu/~lurie/ThursdayFall2017.html
https://www.math.ias.edu/~lurie/ThursdayFall2017.html
https://arxiv.org/abs/1804.02240


[Sau23a] Victor Saunier. The fundamental theorem of localizing invariants. Annals of K-theory,
8(4):609–643, 2023.

[Sau23b] Victor Saunier. A theorem of the heart for the K-theory of endomorphisms. Preprint, 2023.
[Sha23] Jay Shah. Parametrized higher category theory. Algebraic & Geometric Topology, 23(2):509–

–644, 2023.
[Sos19] Vladimir Sosnilo. Theorem of the heart in negative K-theory for weight structures. Documenta

Mathematica, 24:2137 –– 2158, 2019.
[Sta89] Ross E. Staffeldt. On fundamental theorems of algebraic K-theory. Journal of K-theory,

2(4):511 – 532, 1989.
[SW25] Victor Saunier and Christoph Winges. On exact categories and their stable envelopes.

Preprint, 2025.
[TT90] Robert W. Thomason and Thomas Trobaugh. Higher algebraic K-Theory of schemes and of

derived categories. The Grothendieck Festschrift, Vol. III, 1990.
[Yan21] Lior Yanovski. The monadic tower for ∞-categories. Journal of Pure and Applied Algebra,

226, 2021.

106






	3869952ae3842a1006e4153636668eea8276a127fa2a1fd0b323c1155ee08f13.pdf
	blank595x841
	3869952ae3842a1006e4153636668eea8276a127fa2a1fd0b323c1155ee08f13.pdf
	Introduction
	What are trace methods?
	Structure of the thesis
	Survey of the results
	Glimpses of the future
	Acknowledgments.

	Liminary remarks
	A few words about categories and those that are stable
	Algebraic K-theory
	Topological Hochschild homology and its variants

	The tangent bundle of CatEx
	Bimodules on a stable category, laced categories
	Global limits and colimits in the tangent bundle
	The symmetric monoidal structure of the tangent bundle
	Tensors and cotensors in the tangent bundle

	The K-theory of laced categories
	Additivity and semi-orthogonal decompositions
	The universal property of laced K-theory
	Flavours of laced-Verdier sequences

	Trace-like functors and THH of laced categories
	A primer on THH of stable categories
	Laced THH, trace-equivalences and the cyclic bar construction
	Fiberwise-exact invariants and a first universal property for THH
	Topological Hochschild homology is the derivative of laced K-theory

	Higher derivative of laced Verdier-localizing invariants
	Fiberwise Goodwillie calculus
	Cyclic invariance in the tangent bundle
	A low-tech computation of homogeneous parts
	The low-tech polygonic and cyclotomic structures on THH

	The structure of THH of the bicategory CatEx
	Simplicial, cyclic and epicyclic tangent bundles
	Polygonic and cyclotomic structure on the first derivative
	Higher derivatives and the polygonic structure

	Lacing topological Hochschild homology, topological cyclic homology
	The derivatives of laced THH
	Laced topological cyclic homology

	A general criterion for analytic functors
	Total fiber of cubes
	Analytic functors

	Resolution theorems and rigidity
	Heart structures and resolution
	A resolution theorem for K-theory
	A resolution theorem for THH

	The local structure of localizing invariants
	Weighted bimodules and analycity
	The Main Result
	Examples of heart categories
	Stacks with the derived resolution property
	Neeman's approximable categories



	blank595x841
	blank595x841

