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Abstract
We show that Quillen’s resolution theorem for K-theory also applies to exact ∞-categories.

We introduce heart structures on a stable ∞-category, generalizing weight structures, and
using resolution ideas, we show that the category of stable ∞-categories equipped with a
heart structure fully-faithfully embeds into the category of exact ∞-categories. Consequently,
we show a generalized theorem of the heart for K-theory, which is equivalent to its invariance
under passage to the stable envelope of exact ∞-category in the image of the heart functor.
Finally, leveraging the above, we show that K-theory of endomorphisms satisfies the theorem
of the heart for weight structures, even allowing coefficients in a suitable bimodule.
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The resolution theorem is one of the three major results proven by Quillen [Qui73, Theorem 3]
when he introduced the higher K-theory of exact categories. It states the following: let C be an
exact 1-category and A an exact subcategory closed under extensions in C satisfying the following
two conditions:

(i) For every exact sequence X Y Z with Y ∈ A, we have X ∈ A

(ii) For every Z ∈ C, there is an exact sequence X Y Z with Y ∈ A.

then, the inclusion A → C induces an equivalence K(A) ≃−→ K(C). The above axioms in particular
imply that every object of C admits a resolution of length 1 by objects of A, hence the name.
In Corollary 1 of loc. cit., Quillen extends the result to the situation where objects of C have
finite-length resolutions by objects of A, under similar suitable hypotheses on the inclusion.

The standard example given by Quillen of a resolving situation is the inclusion of the category
of compact projective R-modules inside the category of compact R-modules for some ring R.

Compared to its companion facts, the localization and devissage theorems which Quillen also
proved in loc. cit., the resolution theorem has since enjoyed less time under the spotlight.

In [Wal85, 1.4], Waldhausen provided a version of localization adapted to Waldhausen 1-
categories; he called it the additivity theorem and under this name, the localization property has
grown to become the cornerstone of so-called additive and localizing invariants, furnishing a uni-
versal property for K-theory of stable categories following Blumberg-Gepner-Tabuada in [BGT13],
allowing the extension of the definition to large dualizable categories by Efimov, as well as those
ideas applying to L-theory and Grothendieck-Witt theory in spectacular fashion (see the series of
papers [CDH+23a, CDH+23b, CDH+23c, CDH+23d]).
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As for devissage, Waldhausen’s result that looks the most like it is the cell filtration theorem,
also known as Waldhausen’s sphere theorem [Wal85, Theorem 1.7.1]. This is not a generaliza-
tion, as noted by Thomason-Trobaugh in [TT90, 1.11.1], but a result with a similar flavour. A
celebrated theorem of Gillet-Waldhausen (see Theorem 1.11.7 loc. cit.) is often claimed as some
ersatz of devissage, comparing the K-theory of an exact 1-category E nicely embedded into an
abelian one with the 1-category of bounded chain complexes in E , obtained by restricting those in
the ambient abelian one. More recently, Raptis gave a generalization of Quillen’s devissage and
other devissage-like statements in the 1-categorical world [Rap22, Theorem 5.7, Theorem 6.11],
the latter of which is general enough to recover higher categorical ones.

In the higher categorical world, Barwick showed in [Bar15] that if C is a stable category with a
bounded t-structure, then the inclusion of its heart C♡ → C is sent to an equivalence by K-theory.
Barwick named this result the theorem of the heart, in reference to an earlier result of Neeman for
triangulated categories [Nee98, Nee99].

The central example of a theorem-of-the-heart situation is obtained by realizing any abelian
1-category as the heart of a t-structure on its bounded derived category. Note that although the
statement looks similar, the major difference to the Gillet-Waldhausen setting is the apparition of
∞-categories. Like Gillet-Waldhausen however, Barwick’s proof relies on his generalized version of
a localization theorem. Let us also mention that in the context of stable categories and t-structure,
Burklund and Levy have shown a devissage-like result in [BL23], by combining the better of both
Barwick’s theorem of the heart and Quillen’s original devissage result.

This leaves Quillen’s resolution theorem lacking a major counterpart in the setting of stable
categories. Coming to the rescue is another theorem of the heart, whose first correct proof can be
found in work of Hebestreit-Steimle [HSH21, Corollary 8.1.3] where is proven the hermitian version
of this fact.

This theorem has the same statement as Barwick’s, but concerns weight structures instead of
t-structures: if C is a stable category equipped with a bounded weight structure, then the inclusion
of its heart C♡ → C is sent to an equivalence by K-theory, where the heart is an additive category
endowed with the split-exact structure. Unlike Barwick’s, this theorem of the heart applies to the
inclusion of the category of compact projective modules into the bounded derived category, which
serves as the higher categorical version of the category of compact modules over some ring R. This
recovers Quillen’s initial example thanks to Barwick’s theorem of the heart. More generally, this
applies to any additive 1-category into its category of bounded chain complex by [HSH21, Example
3.1.3].

This article holds the following belief to be true:

Slogan The theorem of the heart of [HSH21] is the correct higher analogue of Quillen’s resolu-
tion theorem.

In this slogan, we mean both the theorem of the heart of weight structures of Hebestreit-Steimle
and the generalization we will introduce. We will give an explicit version of this slogan in Theorem
0.5 (see 3.3 in the text). Let us explain our strategy.

By a result of Sosnilo [Sos19, Corollary 3.4], the heart is a fully-faithful functor from stable
categories equipped with a bounded weight-structure into the category of additive categories.
Its essential image consists of weakly-idempotent additive categories and for such categories, the
inverse is given by mapping an additive A to its stable envelope Stab(A) endowed with a suitable
weight structure.

Additive categories can be considered as exact categories via their closed-under-extension em-
bedding into their stable envelope, but as the above suggest, if A is the heart of a bounded weight
structure on a stable category, every exact sequence of A is split so this structure is the same as
the split-exact one. This is unfortunate as Quillen’s resolution theorem lives quite naturally in the
world of exact categories, where all sequences need not split, and if one is convinced by our slogan,
then one will agree that a piece of the puzzle is missing.

We claim this missing piece is given the following definition:
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Definition 0.1 Let C be a stable category. A heart structure on C is the datum of a pair of full
subcategories (C≥0, C≤0) subject to the following conditions:

• (i) C≥0, C≤0 are closed under extensions, C≥0 under finite colimits and C≤0 under finite
limits.

• (iii)a For any C ∈ C, there is an exact sequence

X C ΣY

with X ∈ C≤0 and Y ∈ C≥0.

A heart-exact functor between heart structures is an exact functor f : C → D on the
underlying categories which preserves the two full subcategories of the structure. We denote
CatEx

♡ the category of heart structures and heart-exact functors between them.
aThis indexing is intentional.

The aforementioned weight structures are in particular heart structures, as they have the
stronger property of satisfying an axiom (ii), guaranteeing that the mapping spectra mapC(X, Y )
are connective for X ∈ C≤0 and Y ∈ C≥0, as well as connective and coconnective objects being
closed under retracts.

It still makes sense to talk about boundedness for heart structures, just as it still makes sense
to talk about their heart (thankfully!). However, it is no longer natural to consider the heart of a
heart category only as an additive category. Instead, we remark that C♡ is closed under extensions
in C, hence inherits an exact structure given by specifying a sequence to be exact in A if and only
if it is exact in C. This is a sensible idea: by removing axiom (ii) of the definition of a weight-
structure, we are no longer guaranteed that every exact sequence of the heart splits. In particular,
a stable category with a heart structure need not be recovered by the additive heart. However,
considering the heart as an exact category will suffice, which is the point of our first result:

Theorem 0.2 The functor (−)♡ : CatEx
♡,b → Exact∞ taking a bounded heart category to its

heart is fully-faithful.

For abstract reasons, the inclusion CatEx
∞ → Exact∞ admits a left adjoint, the stable envelope

Stab(E). This stable envelope coincides with the stable envelope of the underlying additive cate-
gories when the structure is split-exact. By [Kle23, Theorem 1], the canonical functor E → Stab(E)
is fully-faithful, reflects exact sequences and its image is closed under extensions.

The above theorem follows from showing that if C has a bounded heart structure, then, the
inclusion of its heart C♡ → C induces an equivalence Stab(C♡) ≃ C, i.e. C♡ generates C as an exact
category. To prove this, we show an explicit criterion for an exact functor to induce an equivalence
of stable envelopes; interestingly, the key input is provided by the hypotheses of Quillen’s resolution
theorem:

Lemma 0.3 Suppose i : A → C is a resolving functor, i.e. satisfies the conditions of Quillen’s
Theorem 3 in [Qui73]. Then, for every stable D, the following functor

i∗ : FunEx(C,D) FunEx(A,D)≃

is an equivalence. In particular, i induces an equivalence Stab(A) ≃−→ Stab(C).

One can show that if C has a heart structure, then C♡ → C is a composition of resolving and
op-resolving1 functors, possibly infinite. Since C is stable, the above lemma implies that the map
Stab(C♡) ≃ C is an equivalence.

Unlike Sosnilo’s result, we do not know of a completion description of the essential image of
our heart functor. Hence, let us introduce a bit of terminology:

1Functors i such that iop is resolving
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Definition 0.4 An exact category E is said to be stably-exact if it is the heart of a heart category.

Additive categories are always stably-exact, by Sosnilo’s result in [Sos19, Corollary 3.4], and
stable categories are also stably-exact when considered as exact categories, since they are equiv-
alent to their stable envelope and thus one can take the maximal structure where every object
is both connective and coconnective. We are also able to show that if A is the heart of a heart
structure on C := Stab(A), then all the intermediary categories C[n,m] := C≤m ∩ C≥n for integers
n ≤ 0 ≤ m are also stably-exact, providing many non-trivial examples.

As a consequence of the proof of the above theorem, we get the following conceptual, modern
interpretation of the conditions of Quillen’s resolution theorem, at least between stably-exact
categories:

Theorem 0.5 — Resolution-Heart equivalence. Let F : Exact∞ → E be a functor preserving
filtered colimits. The following are equivalent:

(i) For every stably-exact E , F sends the map E → Stab(E) to an equivalence.

(ii) For every bounded heart category C, F sends the map C♡ → C to an equivalence.

(iii) F sends every resolving and every op-resolving functor A → D with A,D stably-exact to
an equivalence.

Though this does not speak about resolving functors between non-stably exact categories, we
believe this justifies the previously stated Slogan.

We are also able to show that Quillen’s resolution theorem also holds for K-theory of exact ∞-
categories, by an almost identical adaptation of Quillen’s original arguments in [Qui73, Theorem
3, Corollary 1]. In particular, using previously mentioned ideas, we get a generalized theorem of
the heart for K-theory, which applies to heart structures:

Theorem 0.6 — Theorem of the heart. Let C be a bounded heart category and denote C♡ its
heart. Then, the map

K(C♡) K(C)≃

is an equivalence, where on the left hand side, we have taken K-theory of the exact category C♡.
Equivalently, for every stably-exact E , the following map is an equivalence:

K(E) K(Stab(E))≃

The application we give of our generalized theorem of the heart was at the genesis of this whole
article. If C is a stable category and M : C → Ind C a C-bimodule (i.e. an exact functor), we let
Lace(C, M) denote the lax-equalizer from the Yoneda embedding j : C → Ind C to M . This is a
stable category.

If C ≃ Perf(R), the category of compact R-modules over some ring spectra R, and M a R-
bimodule seen as a functor to the Ind-construction via tensoring M⊗R−, then Lace(C, M⊗R−) is
exactly End(R, M), the category of M -parameterized endomorphisms. When R and M are further
supposed connective, End(R, ΣM) coincides with Perf(R⊕M), the category of compact modules
over the square-zero extension (see Example 3.12). Remark also that if M = j is the Yoneda
embedding, then Lace(C, M) coincides with End(C). We will call the composite K(Lace(C, M))
laced K-theory.

If C has a heart structure, we say that a C-bimodule M is weighted if, for every X ∈ C≤0
and Y ∈ C≥0, the mapping spectra map(X, M(Y )) is connective. When C = Perf(R) and the
heart structure is the usual weight structure with heart Proj(R), weighted bimodules are exactly
connective R-bimodules.

When M is weighted, Lace(C, M) inherits a heart structure whose heart is the full subcategory
Lace(C♡, M) of pairs (X, f) where X ∈ C♡. Note that even if C has a heart structure, the
best one can hope for in general is a heart structure on Lace(C, M) which verifies axiom (ii)
of weight structures only up to a shift by −1, hence no longer a weight structure. Still, our
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generalized theorem of the heart yields, for every heart category C and every weighted bimodule
M , an equivalence:

K(Lace(C♡, M)) K(Lace(C, M))≃

Note however that it need not be that if C♡ has a heart structure and M is any bimodule, then
Lace(C♡, M) is the heart of a heart structure on Lace(C, M). In fact, we expect the above equiva-
lence to fail in general if C has only a (−1)-shifted weight structure as above and M is not weighted.

Remark that the Yoneda embedding is a weighted bimodule if and only if the heart structure
on C verifies the condition (ii) in the definition of a weight structure. Hence we have:

Theorem 0.7 — Theorem of the heart for KEnd. Let C be a stable category equipped with a
bounded weight structure. Then, there is an equivalence

K(End(C♡)) K(End(C))≃

Equivalently, the above states that if A is additive, then K(End(A))→ K(End(Stab(A))) is an
equivalence, though one has to be careful and End(A) is not considered simply as an additive cat-
egory but as an exact category with the inherited structure from End(Stab(A)). This generalizes
Theorem 1.7 of [BGT16], which proved the above for A being the 1-category of projective modules
over a discrete ring A. It also recovers Theorem 4.9 of loc. cit. which showed the above held on
π0 for the category of projective modules over a connective ring spectrum.

There is another consequence worth mentioning of the theorem of the heart for laced K-theory.
Using this result, we can show the functor M 7→ K(Lace(C, M)) commutes with sifted colimits
when restricted to weighted bimodules M . A similar statement plays usually a critical role in
the Dundas-Goodwillie-McCarthy, and we expect that to use this generalized statement in the
upcoming article revisiting trace methods.

Acknowledgements. We want to thank Yonatan Harpaz for his constant support during the
writing of this article, as well as helpful comments and insightful discussions.

Conventions. In this article and as we have already done in this introduction, we write
category for ∞-categories and specify 1-category when talking about categories whose mapping
spaces are discrete. We write S for the category of spaces, Sp for the category of spectra, Cat∞
for the category of small categories, CatEx

∞ for its non-full subcategory of stable categories and
exact functors between them and Exact∞ for the category of exact categories and exact functors
between them. If C is a small category, we denote Ind C its Ind-construction; in particular, if C is
stable, so is its Ind-construction and we have Ind C ≃ FunEx(Cop, Sp). When C is stable, we denote
by map the enrichment in Sp of the mapping spectra and reserve Map to mapping spaces.

1 Quillen’s resolution theorem for exact categories
The goal of this section is to prove a higher categorical version of the original resolution theo-

rem of Quillen, namely Theorem 3 of [Qui73]. We follow a similar strategy, relying on the higher
categorical version of Quillen’s Theorem A provided by [Lur08, Theorem 4.1.3.1] as well as the
treatement of higher exact categories of [Bar15].

Definition 1.1 — Definition 3.1 of [Bar15]. Let C be an additive category. An exact structure on
C is the datum of two subcategories Cinj and Cproj containing all equivalences and whose arrows
are denoted respectively ↪→ and ↠, which we choose to call respectively exact inclusions and
exact projections, subject to the following conditions:

• For any X ∈ C, 0 ↪→ X is an exact inclusion and X ↠ 0 an exact projection.

• Exact inclusions are stable under pushout against any map and exact projections under
pullback against any mapa.
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• Any square:
X Y

Z T

is a pullback of a span with a leg in Cinj and the other in Cproj if and only if it is a pushout
of a cospan with the same condition.

aIn particular, such pullbacks and pushouts are required to exist.

If C is an exact structure on an additive category, we will often omit to write the two subcat-
egories and simply say that C is an exact category. A product-preserving functor C → D between
exact categories is itself called exact if it preserves either exact inclusions and their pushouts or
exact projections and their pullbacks, in which case it preserves both by [Bar15, Proposition 4.8].

If C is an exact category, an exact sequence in C is a fiber-cofiber sequence of the form

X Y Z

Remark that it suffices that such a sequence is either a fiber or a cofiber sequence for the other
one to also be satisfied.

Let A be an additive full subcategory of some exact category C and suppose further that A is
closed under extension in C. Then, there is an exact structure on A where exact inclusions are
morphisms which are exact inclusions when viewed in C and whose cofiber lies in A, and projections
are defined dually (this is marginally more general than 1.4.6 of [Bar13]).

Definition 1.2 Let A be an exact subcategory of C closed under extensions. We say that the
exact structure on A is inherited from C if it is obtained by the above procedure. Specifically,
a sequence is exact in A if and only if it is exact when viewed as a sequence in C.

The inherited structure is the maximal exact structure such that A → C is exact. The minimal
such structure is the split-exact structure where a sequence is exact in A if and only if it is a
split-exact sequence.

Associated to any exact category C is another category denoted Q(C), obtained by taking the
underlying category of a complete Segal space Q•(C) (see [Bar13, Section 3] or [CDH+23b, Section
2.7] for details). This category has the same objects and a morphism from X to Y is the datum
of a span of the following shape:

X Z Y

The K-theory space is obtained from Q(C) by looping once its geometric realization (i.e. the left
adjoint of the inclusion S → Cat∞). In particular, an equivalence at the level of the Q-construction
implies an equivalence at the level of K-theory.

In [Qui73, Theorem 3], Quillen gives an explicit criterion for the embedding of a closed-under-
extension A inside C to induce an equivalence at the level of the Q-construction. We put it in a
definition:

Definition 1.3 Let i : A → C be a fully-faithful functor whose image is closed under extensions.
Suppose C is exact and endow A with the inherited structure. We say that i is resolving if it
satisfies the following two additional properties:

(i) For every exact sequence X Y Z with Y ∈ A, we have X ∈ A

(ii) For every Z ∈ C, there is an exact sequence X Y Z with Y ∈ A.

We say i is op-resolving if iop is resolving.

Our naming convention is inspired by [Dun98] but beware that they call resolving an embedding
satisfying conditions related to Quillen’s Corollary 1, whereas we gave a name to the conditions of
Quillen’s Theorem 3.
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Theorem 1.4 — Quillen’s resolution theorem. Let i : A → C be a resolving functor. Then, i

induces an equivalence of spaces |Q(A)| ≃−→ |Q(C)| so consequently an equivalence on the level
of K-theory.

Proof. Denote B the full subcategory of Q(C) spanned by the image of Q(A). We have a
factorization

Q(A) B Q(C)g f

and we will show that both maps induce equivalences on the geometric realizations by showing that
gop and f are cofinal. For both proofs, we use the higher categorical version of Quillen’s Theorem
A (see [Lur08, Theorem 4.1.3.1]), and are reduced to show some categories are weakly contractible.

We first show f is a weak equivalence. Let X ∈ Q(C), it suffices to show that M := B ×Q(C)
Q(C)X/ is contractible; by construction, M is a category whose objects are spans X ↞ Z ↪→ A
with A ∈ A. Consider the wide subcategory Qproj(C) of Q(C) composed of spans X ↞ Z ↪→ Y
where the map Z → Y is an equivalence; this category is equivalent to the wide subcategory
(Cproj)op of Cop whose arrows are exact projections.

DenoteMproj the subcategory ofM given by B×Q(C) Qproj(C)X/; this a full subcategory ofM
since it is equivalently the pullback along the projection from M of Qproj(C)X/ → Q(C)X/ which
is easily checked to be fully-faithful. Its objects are equivalently exact projections A ↠ X with
A ∈ A and a map from A ↠ X to A′ ↠ X is the datum of an exact projection A′ ↠ A and a
homotopy which makes the obvious triangle commute (note the order reversal).

By [HHLN20, Proposition 4.9], the collection of spans where the right hand map an equivalence
(purely forward pointing spans in the parlance of loc. cit.) and spans where the left hand map is
the identity (purely backward pointing spans) forms an orthogonal factorization system on Q(C)
(see [Lur08, Definition 5.2.8.8]). It follows from Lemma 5.2.8.19 of loc. cit. that the inclusion
Qproj(C)X/ → Q(C)X/ admits a right adjoint given on objects as follows:

(X Y Z) (X Y Y )idY

For any span X ↞ Z ↪→ Y with Y ∈ A, we have Z ∈ A as well hence the above descends
to a functor M → Mproj . One readily checks that it provides a right adjoint to the inclusion
Mproj → M hence the latter is a homotopy equivalence. Thus we are reduced to showing that
Mproj is weakly contractible.

By (ii), the categoryMproj is nonempty since there exists B ↠ X with B ∈ A. Moreover, given
two projections Y ↠ X and Y ′ ↠ X, then closure under extensions of A implies that Y ×X Y ′ is
an object of A since it fits in the following exact sequence of C:

Z Y ×X Y ′ Y

where we have taken Z to be the object fitting in an exact sequence Z ↪→ Y ↠ X, which by (i)
implies that Z ∈ A. In particular, by fixing some object p : A0 ↠ X in Mproj , and denoting P
the functor sending A ↠ X to A×X A0 ↠ X, one obtains two natural transformations id =⇒ P
and cstp =⇒ P which together imply that Mproj is weakly contractible.

In order to show that g is a weak equivalence, we let X ∈ B and working dually, we show that
N := Q(A) ×B B/X is weakly contractible; this time, N is a category whose objects are spans
Y ↞ Z ↪→ X (mind the order) and all three X, Y, Z ∈ A though the maps of the span are only
exact inclusions/projections in the exact structure on C. However, note that a map in N from
(Y ↞ Z ↪→ X) to (Y ′ ↞ Z ′ ↪→ X) are given by diagrams of the following shape:

Y T Z

Y ′ Z ′

X

∈A
∈A

7



where every object is in A, the maps indicated ∈ A are exact injections/projections in the exact
structure of A and the square is cartesian in C; in particular, it follows from this last condition
that Z ↪→ Z ′ is already an exact inclusion in the exact structure of A.

Dually to what have done before, we can consider Qinj(C) the wide subcategory of Q(C) whose
arrows are spans Y ↞ Z ↪→ X with Z → Y an equivalence, and Binj the full subcategory of
Qinj(C) spanned by Qinj(A). Let N inj be the subcategory of N given by Q(A) ×B Binj

/X ; again,
N inj is a full subcategory of N . It has equivalently objects exact inclusions Z ↪→ X and morphisms
given by exact inclusions Z

∈A
↪−−→ Z ′ featuring in an exact sequence of A as well as a homotopy

which makes the obvious diagram commute (note there is no order reversal here).
Finally, remark that the left adjoint to the inclusion Qinj(C)/X → Q(C)/X which only keeps

non-trivial the exact-inclusion, sends BX/ to Binj
X/ and Q(A)/X to Qinj(A)/X , so that it descends

to N by virtue of (i). Hence, N inj → N is a homotopy equivalence. To conclude, remark that
N inj has an initial object, given by the span 0 ↞ 0 ↪→ X.

Remark 1.5 The situation sometimes calls for a dual version of the above. Indeed, recall that
K(C) ≃ K(Cop) so that the Lemma also applies if i is op-resolving, i.e. if the following two
conditions are met:

(i’) For every exact sequence X Y Z with Y ∈ A, we have Z ∈ A

(ii) For every X ∈ C, there is an exact sequence X Y Z with Y ∈ A.

The above result provides a counterpart to Theorem 3 of [Qui73]. We do not prove, though
it is true and the same proof suitably adapted to the realm of higher categories ought to apply, a
version of Corollary 1. The reason for this is that in our setting, the situations we will consider
will feature both resolving and op-resolving situation together. Hence, a corollary dedicated to
composite of resolving functors makes little sense.

However, some of Quillen’s original arguments for Corollary 1 (the unnamed lemma that follows
it) still manage to make their way into this paper, notably in the proof of Lemma 2.7. Hence, we
are led to considering the aforementioned lemma and Theorem 2.9 as the correct counterparts of
this result for higher categories.

2 Heart structures on stable categories
2.1 Generalities on heart structures

Recall the definition of a weight structure on a stable category, owed to Bondarko for tri-
angulated categories, our version for stable categories being inspired from the presentation in
[ES21, HSH21].

Definition 2.1 Let C be a stable category. A weight structure on C is the datum of a pair of full
subcategories (C≥0, C≤0) subject to the following conditions:

• (i) C≥0, C≤0 are closed under retracts, C≥0 under finite colimits and C≤0 under finite limits.

• (ii) For any X ∈ C≤0 and Y ∈ C≥0, the mapping spectra mapC(X, Y ) is connective

• (iii) For any C ∈ C, there is an exact sequence

X C ΣY

with X ∈ C≤0 and Y ∈ C≥0.

A weight-exact functor between weight structures is an exact functor f : C → D on the
underlying categories which preserves both non-negative and non-positively weighted objects.
We denote CatEx

wt the categories of weight structures and weight-exact functors between them.

If (C≥0, C≤0) is a weight structure on C and n, m ∈ Z, then, we let respectively C≥n, C≤m and
C[m,n] be the full subcategories of C spanned by ΣnY for Y ∈ C≥0, by ΩmX for X ∈ C≤0 and their
intersection. The category C♡ := C[0,0] is called the heart of the weight structure.
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If C is a weight structure, then, both C≥0 and C≤0 are closed under extensions as shown in
Lemma 3.1.2 of [HSH21]. This extends to the above defined categories.

Definition 2.2 A weight structure on a stable category C is said to be bounded or exhaustive if
the map ⋃

n∈Z
C[−n,n] C≃

is an equivalence.

We now introduce a generalization of Definition 2.1: we remove the condition (ii) and replace
the closure under retract by closure under extensions. The motivation for this definition is to
encapsulate exactly what we will need for our proof of the theorem of the heart to work.

Definition 2.3 Let C be a stable category and n ∈ Z. A heart structure on C is the datum of a
pair of full subcategories (C≥0, C≤0) subject to the following conditions:

• (i) C≥0, C≤0 are closed under extensions, C≥0 under finite colimits and C≤0 under finite
limits.

• (iii)a For any C ∈ C, there is an exact sequence

X C ΣY

with X ∈ C≤0 and Y ∈ C≥0.

A heart-exact functor between heart structures is an exact functor f : C → D on the
underlying categories which preserves the two full subcategories of the structure. We denote
CatEx

♡ the category of heart structures and heart functors between them.
aThe name of this condition is intentional, we simply consider condition (ii) empty.

In particular, weight structures are heart structures and a functor between weight-exact cate-
gories is heart-exact if and only if it is weight-exact, so that CatEx

wt embeds as a full subcategory
of CatEx

♡ . Just as we say weighted category instead of a category with a weight-structure, we will
say that C is a heart category if it is a category endowed with a heart structure.

If C is a heart category, then we say that C is bounded if the same condition as Definition 2.2
holds for C. Moreover, we can also consider the intersection C≥0 ∩ C≤0, which we again denote C♡

and call the heart of C.

Remark 2.4 If F : C → D is a heart-exact functor between heart categories, it maps C♡ to D♡

hence induces an additive functor F ♡ : C♡ → D♡. Since the exact structure on the heart is
inherited from the stable structure, F ♡ preserves the exact structures (i.e. is an exact functor
of exact categories) hence the heart is a well-defined functor landing in Exact∞, the category
of exact categories.

We will see later on that a heart-exact C → D is in fact exactly the same datum as an exact
functor C♡ → D♡, vindicating the name.

Let us record the following fact, which holds for weight structures by [HSH21, Lemma 3.1.5]
and whose proof is exactly the same:

Lemma 2.5 Let X ∈ C[a;b] and let Y X ΣZ be an exact sequence with Y ∈ C]−∞;c]
and Z ∈ C[c;+∞[.

Then, we have Y ∈ C[a;c] and Z ∈ C[c;b].

Proof. This is the same proof as [HSH21, Lemma 3.1.5] which shows the corresponding fact for
weight structures: consider the rotated exact sequences:

Z Y X X ΣZ ΣY

The Lemma follows from closure under extensions of the relevant categories, which holds by hy-
pothesis for us, applied to the above sequences.
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2.2 On the category of bounded heart categories
In [Sos19, Corollary 3.4], Sosnilo shows that taking the heart is a fully-faithful functor taking

the category CatEx
wt,b of bounded weighted categories to the full subcategory of Catadd

∞ of weakly-
idempotent additive categories. The goal of this section is to provide a similar result to Sosnilo’s for
heart categories. Instead of additive categories, our heart takes CatEx

♡,b, the category of bounded
heart categories, to in Exact∞, the category of exact categories. We will show this functor is
fully-faithful and although we do not have a complete description of the essential image, we will
state some of its properties.

Recall that we have a fully-faithful functor CatEx
∞ → Exact∞. If E is an exact category, we can

consider Stab(Esplit), the stable envelope of the underlying additive category of E (see [BGMN22,
Construction 2.16]). There is a fully-faithful functor E → Stab(Esplit) which is in general only
additive and not exact.

In [Kle23, Definition 3.1], Klemenc builds a stable category Stab(E) by localizing Stab(Esplit).
He shows the composite i : E → Stab(E) satisfies the following:

Proposition 2.6 — Klemenc. Let E be an exact category. Then i : E → Stab(E) is fully-faithful,
closed under extensions, preserves and reflects exact sequences and induces an equivalence for
every stable D:

i∗ : FunEx(Stab(E),D) FunEx(E ,D)≃

In consequence, Stab : Exact∞ → CatEx
∞ is left adjoint to the inclusion.

Proof. The functor i is fully-faithful by Proposition 3.17 of [Kle23], exact by Corollary 3.21,
has the universal property by 3.22, and reflects exact sequences and closed under extensions by
Proposition 3.25.

The fact that E → Stab(E) is closed under extensions and reflects equivalences means in our
lingo that the exact structure of E is inherited from Stab(E). If E is an exact 1-category, then
Stab(E) is the bounded derived category of E (see [Kle23, Corollary 3.29]).

We now prove a more concrete criterion under which a functor between exact categories induces
an equivalence of stable envelopes.

Lemma 2.7 Let i : A → C be a resolving functor. Then, it induces an equivalence

i∗ : FunEx(C,D) FunEx(A,D)

for every stable D. In particular, i induces an equivalence Stab(A) ≃−→ Stab(C).

Proof. The crux of the proof lies in the fact that those conditions force the values on C from the
values on A for functors which preserve exact sequences.

Let X ∈ C, then we define Ex(X) to be the category of exact sequences

A B X

where A, B ∈ A. Note that Ex is not a priori a functor in X. However, denote Null(X) the
category of sequences A B X with a given null homotopy of their composite, where
we no longer require the maps to be exact inclusions or exact projections. Remark that Null(X)
is clearly a functor in X as it is the fiber of the map

Fun({•2 ←− •0 −→ •1}, C/X) Fun({•2}, C/X) ≃ C/X

We claim the inclusion Ex(X)→ Null(X) is cofinal. By [Lur08, Theorem 4.1.3.1], we are reduced
to checking that for every B0 → X with B0 ∈ A, the category of factorizations

B0 B X
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is weakly contractible. This category is nonempty: indeed, by (ii) there is a map B ↠ X with
B ∈ A and the induced B0 ⊕ B ↠ X is an exact projection by Lemma [Bar15, Lemma 4.7].
Moreover, this category also admits products, given by the pullback B×X B′ ↠ X equipped with
its canonical map from B0. One checks that B ×X B′ ∈ A by closure under extension of A in C
and that the map is indeed a projections since they are stable under pullback and composition.
Consequently, the comma category in question is indeed weakly contractible and the map cofinal.

In consequence, if F : A → C is any functor, the following formula defines a functor R(F ) with
source C and target D:

X 7−→ colim
Ex(X)

(cofib(F (A)→ F (B))) ≃ colim
Null(X)

(cofib(F (A)→ F (B)))

Since colimits are functorial, R upgrades to a functor Fun(A,D) → Fun(C,D) taking F to R(F ).
The canonical F (B)→ cofib(F (A)→ F (B)) induces a natural map in X as follows:

colim
Null(X)

F (B) −→ colim
Null(X)

(cofib(F (A)→ F (B)))

If X ∈ A, then Null(X) has a terminal object given by the sequence 0 X X hence
both colimits evaluate to F (X), which provides a natural equivalence F → i∗R(F ). This equiv-
alence is again natural in F . Moreover, suppose G : C → D is a functor, there is a map
cofib(G(A) → G(B)) → G(X) for every object of Null(X), hence we have a natural transfor-
mation R(i∗G)→ G, which is itself natural in G.

Suppose further that F : A → D is exact, then we claim that R(F ) is also exact. We first
show that F sends exact sequences of Ex(X) to exact sequences, and then we deal with the more
general case. Let

A B X A′ B′ X

be exact sequences in Ex(X). We have a diagram with exact rows and columns:

0 A A

A′ B′ ×X B B

A′ B′ X

By closure under extension of A, we have that B′×X B ∈ A. Since F is exact in A, it sends every
sequence save for the bottom horizontal and the right vertical ones to exact sequences in D. Since
D is stable, taking the pushout F (B′)

∐
F (B′×X B) F (B) completes the diagram where we applied

to F to have exact rows and columns2. We deduce from this the following equivalences:

cofib(F (A)→ F (B)) ≃ F (B′)
∐

F (B′×X B)

F (B) ≃ cofib(F (A′)→ F (B′))

This shows that the functor Ex(X) → C sending (A B X) to cofib(F (A) → F (B))
inverts every arrow in Ex(X).

Since Ex(X) is cofinal in Null(X) which has an initial object, Ex(X) is contractible; it fol-
lows that the colimit over Ex(X) of cofib(F (A) → F (B)) is constant. In particular, for every
(A B X), the canonical map is an equivalence

cofib(F (A)→ F (B)) −→ colim
Ex(X)

(cofib(F (A′)→ F (B′)))

Consequently, using the natural equivalence F → i∗R(F ) we constructed, we see that R(F ) sends
the objects of Ex(X) to exact sequences.

We now deal with the general case and show R(F ) sends all the exact sequences in C to
equivalences. Let X Y Z be an exact sequence of C and let A B Y be an

2Here it is critical that D is stable, otherwise we would know nothing of the fiber of say F (B) → F (B′ ×X B).
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exact sequence with A, B ∈ A as provided by hypothesis (i) and (ii) of Definition 1.3. Then, we
have a diagram with exact rows and columns:

A A 0

X ×Z B B Z

X Y Z

where X ×Z B ∈ A by (i). Applying R(F ) to this diagram, every sequence save for the bottom
horizontal one is sent to an exact one in D, hence this is also the case for the bottom horizontal
one, which shows the wanted statement. Consequently, R(F ) is exact as wanted.

We have a well-defined functor R : FunEx(A,D)→ FunEx(C,D) coming with a natural equiva-
lence id → i∗ ◦ R. Moreover, if G : C → D is exact then the natural transformation R(i∗G) → G
we have constructed earlier is an equivalence; indeed, we have shown previously that this is the
case on A and for every X ∈ C, there is an exact sequence

A B X

such that A, B ∈ A; the result now follows from the exactness of both G and R(i∗G). Hence R is
an equivalence with inverse i∗, which proves the wanted claim.

Of course, if i : A → C is op-resolving, applying the above to iop and Dop for a stable D
immediately implies the dual version:

Corollary 2.8 Let i : A ⊂ C be op-resolving. Then, the following functor

i∗ : FunEx(C,D) FunEx(A,D)

is an equivalence for every stable D. In particular, i induces an equivalence Stab(A) ≃ Stab(C).

If C is a heart category, then the inclusion C♡ → C induces a functor Stab(C♡) → C. If C
is bounded, we now show that C♡ → C factors as the composition of resolving or op-resolving
functors. The above criterion then implies that they have the same stable envelope, but C was
already stable so Stab(C♡) ≃ C.

Theorem 2.9 Let C be a bounded heart category. Then, the inclusion C♡ → C factors as the
(possibly infinite) composition of resolving or op-resolving functors. Consequently, we have an
equivalence

Stab(C♡) C≃

Proof. The result follows from the following two facts:
(a) Let i ≤ j, then C[i,j] → C[i,j+1] is resolving

(b) Let i ≤ j, then C[i,j] → C[i−1,j] is op-resolving

Since the heart structure on C is bounded, this implies that the inclusion C♡ → C is a composition
of resolving and op-resolving functors as wanted. The proof of (b) will be dual to the proof of (a),
hence let us only do the latter. We remark already that C[i,j] is closed under extensions in C hence
in all of its exact subcategories.

Let X Y Z be an exact sequence such that X, Z ∈ C[i,j+1] and Y ∈ C[i,j]. Then,
Lemma 2.5 ensures that X ∈ C[i,j] which gives (i).

If Z ∈ C[i,j+1], then applying condition (iii) of Definition 2.3 to ΩjZ implies there is an exact
sequence

X Y Z

such that X ∈ C≥j and Y ∈ C≤j . It follows from Lemma 2.5 that Y ∈ C[i,j], which gives (ii).
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Corollary 2.10 The functor (−)♡ : CatEx
♡,b → Exact∞ taking a bounded heart category to its

heart is fully-faithful.

Proof. Let C,D be heart categories, we want to prove that the functor

Φ : Fun♡−Ex(C,D) FunEx(C♡,D♡)

is an equivalence, the left hand side denoting the full subcategory of FunEx(C,D) spanned by
heart-exact functors. By Theorem 2.9, the inclusion i : C♡ → C induces an equivalence:

i∗ : FunEx(C,D) FunEx(C♡,D)≃

Under this equivalence, the full subcategory of heart-exact functors is mapped to a full subcategory
of FunEx(C♡,D♡). One checks that by the explicit formula for the inverse provided in Lemma 2.7
that any functor C♡ → D♡ induces a heart-exact functor C → D. This concludes.

Remark 2.11 Differently stated, the above proposition says that an exact functor C → D between
bounded heart categories is heart-exact if and only if it maps C♡ to D♡.

2.3 Stably-exact categories
We have seen in Theorem 2.9 that the heart is fully-faithful. We are left with identifying the

essential image.
Definition 2.12 An exact category E is said to be stably-exact if it is the heart of a heart structure
on a stable category.

Recall that for any exact E , the exact structure on E is inherited from Stab(E) so it makes sense
to ask whether E can be realized as an exact category via the heart of a heart category. Moreover,
if E is stably-exact, then it is the heart of a unique heart structure on its stable envelope Stab(E)
by Theorem 2.9.

In the rest of this section, we provide examples and stability properties of the class of stably-
exact categories.

Proposition 2.13 — Bondarko-Sosnilo. Additive categories which are closed under retracts in their
stable envelopes, are stably-exact.

Proof. This is essentially an argument that goes back to Bondarko. We spell it out here for two
purposes: to translate it from the language of triangulated categories to stable categories, and to
stress which part of the argument breaks when the exact structure is not split.

Suppose A is a split-exact category. We write C for Stab(A) and we claim there is a heart
structure on C such that C♡ ≃ A.

Denote C≥0 the full subcategory of C generated under finite colimits and extensions by objects
X ∈ A (but not necessarily stable under limits), and dually for C≤0 and limits. We check that this
defines a bounded heart structure by proving the two points of Definition 2.3 are satisfied; remark
that it is clear that such a structure is bounded. Point (i) is true by construction. We remark
also that if X, Y ∈ A then mapC(X, Y ) is connective; this clearly extends to X ∈ C≤0 and Y ∈ C≥0.

(iii). We prove an apparently stronger result. Denote W the full subcategory of X ∈ C such
that for every n, there exists an exact sequence

P N X

with N ∈ C≤n and P ∈ C≥n; such a sequence will be called a n-shifted weight decomposition. We
claim first that A ⊂ W: indeed, for n ≥ 0 we can take the trivial decomposition with P = 0 and
if n ̸= 0, the following exact sequence is a (−n)-shifted weight decomposition

ΩnX ⊕ ΩX ΩnX X
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where the first map is the projection and the second map is the zero map.
To conclude, it remains to show that W is closed under fibers and cofibers. The arguments are

dual and so we consider the case of cofibers. Let X → Y be a map in W and denote Z its cofiber.
Let P → N → X be a n-shifted weight decomposition and R → Q → Y a (n + 1)-shifted weight
decomposition. Remark that the composite N → Y factors uniquely through Q since

mapC(N, Q) mapC(N, Y )

has fiber mapC(N, R) where N ∈ C≤n and R ∈ C≥n+1, and thus is an equivalence on π0. Hence,
by taking cofibers, we can form the diagram with exact rows and columns:

P R T

N Q S

X Y Z

where S ∈ C≤n+2 and T ∈ C≥n. But remark that T is an extension R → T → ΣP of objects in
C≥n+1, hence T ∈ C≥n+1 as well; similarly S ∈ C≤n+1, so that we have provided a (n + 1)-shifted
weight decomposition for Z. This shows that our structure satifies axiom (iii) of Definition 2.3.

Finally, we have to show that A is the intersection of C≥0 and C≤0. Recall that the Yoneda
embedding j : C → Ind C ≃ FunEx(Cop, Sp) carries A to the full subcategory of compact objects
in PΣ(A) = Fun⊕(Aop, Sp≥0). It follows that j also maps C≥0 to compact objects of PΣ(A), as
connective spectra are closed under colimits in Sp, and compact objects under finite colimits.

Now, if X ∈ C≥0∩C≤0, then j(X) ∈ PΣ(A) and for every Y ∈ A, we have mapInd C(j(X), j(Y ))
is connective, but the category PΣ(A) is the non-abelian derived category of A, in particular it
is generated by A under sifted colimits [Lur08, Proposition 5.5.8.15] thus the above connectivity
extends to the whole of PΣ(A). Hence, mapPΣ(A)(j(X),−) is connective and preserves sifted
colimits; this extends to the mapping space because Ω∞ : Sp≥0 → S preserve sifted colimits. In
particular, since PΣ(A) is generated by A under sifted colimits, this implies that idj(X) factors
through an object of A. By hypothesis, A is closed under retracts in C, hence we get that j(X) ∈ A
which concludes.

Remark 2.14 For any exact category, the category W defined in the proof always contains E ,
and it is even closed under suspensions and loops. Hence, the reason the proof fails for general
exact categories is the closure under extensions of W.

Let us now mention some stability properties for heart categories and stably-exact categories.
If C is stable, then it is stably-exact as an exact category, and combined with the above result, this
means the two extremal type of exact categories are stably-exact. We now seek exhibit non-stable
non-split-exact categories which are nonetheless stably-exact. First, let us mention the following
fact:

Lemma 2.15 Suppose E is a stably-exact category, then Eop is stably-exact.

Proof. We have an equivalence Stab(Eop) ≃ Stab(E)op. We claim that inverting the role of
Stab(E)≥0 and Stab(E)≤0 gives a structure whose heart is Eop. The weight decomposition of
X ∈ Stab(E) yields a weight decomposition for ΩX ∈ Stab(E)op (the loop being the loop of the
opposite category), which concludes since Ω is an equivalence.

Lemma 2.16 Suppose A is a stably-exact category with stable envelope C, and denote C[n,m] :=
C≥n ∩ C≤m for integers n ≤ 0 ≤ m. Then, C[n,m] is stably-exact.

Proof. We claim that the pair of categories (C≥n, C≤m) has the wanted properties of Definition
2.3. Condition (i) is clear and condition (iii) is trivially realized by virtue of the inclusions C≥0 ⊂
C≥n and C≤0 ⊂ C≤m, which imply we can just take the existing decompositions.
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Remark that even if A is additive, the C[n,m] need not be in general: this furnishes many
examples of stably-exact categories which are neither additive nor stable.

Lemma 2.17 Let C be a bounded weight structure, then Fun(∆n, C) has a bounded heart structure
with heart Fun(∆n, C♡).

Proof. Suppose given a map X → Y in C and exact sequences P → N → X and P ′ → N ′ → Y
with P, P ′ ∈ C≥0 and N, N ′ ∈ C≤0. Then, there is a map N → N ′ making the square commute
since

mapC(N, N ′) mapC(N, Y )

is surjective on π0 (its fiber is mapC(N, P ′) which is connective). In particular, this commutative
square induces a map of the fibers P → P ′.

Let Fun(∆n, C)≥0 := Fun(∆n, C≥0) and Fun(∆n, C)≤0 = Fun(∆n, C≤0). Since limits and col-
imits are computed pointwise in functor categories, these are closed under extensions and finite
limits or finite colimits in Fun(∆n, C). Moreover, the above argument shows that the pointwise
decompositions of (iii) upgrade to a decomposition in Fun(∆n, C). Finally, it is clear that the heart
is exactly Fun(∆n, C♡).

Remark that in the above, it is paramount that C is a weight category, and not simply a heart
category, and that the heart structure on Fun(∆n, C) verifies a weakened version of axiom (ii) of
weight categories, where mapping spectra are only supposed to be (−n)-connective. In particular,
one has to consider Fun(∆n, C♡) with its non-split exact structure for the results of the following
sections to apply.

Finally, we conclude this section by a more algebro-geometric example of a heart structure.
For a quasi-compact quasi-separated scheme X, we denote Perf(X) the category of compact OX -
modules.

We call a scheme X divisorial if it has an ample family of line bundles as defined in [TT90,
Definition 2.1] (see also [BGI71, Exposé II, 2.2.3]). For instance, quasi-projective varieties over a
field are divisorial by Example 2.1.2 of [TT90]. Proposition 2.3.1(d) together with Theorem 2.4.3
of loc. cit. show that perfect complexes over a divisorial X are equivalent to bounded strict-
complexes, i.e. finite complexes of finite locally free OX -modules. We will denote Vect(X) the
subcategory3 of such complexes concentrated in degree 0.

Proposition 2.18 Let X be a divisorial scheme. Then, the category Perf(X) has a heart structure
whose heart is Vect(X).

Proof. Define Perf(X)≥0 to be the full subcategory of Perf(X) of connective perfectOX -modules
and PerfY (X)≤0 those that are of negative tor-amplitude in Perf(X).

Since the two conditions are local, it follow from the affine case that both categories are closed
under extensions, the former under finite colimits and the latter under finite limits.

Let K ∈ Perf(X), by [TT90] K is a finite complex of finite locally free OX -modules. Denote
P := τ≥1K the positive truncation of K and N := τ≤0K the non-positive one, so that the
following sequence N → K → P is an exact sequence in Perf(X). The freeness implies that
P is concentrated in strictly positive degrees, hence is the suspension of a connective complex.
Moreover N is necessarily of negative tor-amplitude in Perf(X) by [Sta23, Tag 08CI], using that
locally free modules are flat. Hence the previous exact sequence provides the decomposition of (iii)
of Definition 2.3.

Remark that a connective perfect complex of negative tor-amplitude is exactly concentrated in
degree 0 by loc. cit., hence Vect(X) is indeed the heart of this heart structure. This concludes.

Remark 2.19 In particular, the special case of [TT90, Exercise 5.7] where i : Y → X is the iden-
tity, shows that K(Perf(X)) agrees with the K-theory of K(Vect(X)), when viewing the latter
as an exact 1-category and the former as a Waldhausen 1-category (see Lemma 3.5 of loc. cit.).

3This is in fact a 1-category.
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This is implied by the above proposition and Theorem 3.1 below; in fact, the proof strategies
are similar and Thomason-Trobaugh use the Gillet-Waldhausen theorem instead of our theorem
of the heart. Note also that the main theorem of [HM10] implies that Stab(Vect(X)) ≃ Perf(X)
with its exact structure, which we recover by the above and Theorem 2.9.

3 Theorems of the heart
3.1 Resolution and the theorem of the heart for heart categories

By following Quillen’s original arguments, we have shown in the first section that the Q-
construction and consequently K-theory, satisfied the resolution theorem, i.e. sends resolving (and
op-resolving) functors to equivalence. Theorem 2.9 shows if C has a heart structure, then the map
C♡ → C factors as a composition of resolving and op-resolving functors. The theorem of the heart
for heart structures immediately follows:

Theorem 3.1 — Theorem of the heart. Let C be a bounded heart structure and denote C♡ its
heart. Then, the map

K(C♡) K(C)≃

is an equivalence, where on the left hand side, we have taken K-theory of the exact category C♡.

Proof. This follows from Theorem 2.9 combined with Theorem 1.4 using that K preserves filtered
colimits.

By the fully-faithfulness of the heart functor, the above can be reformulated as follows:

Corollary 3.2 Let E be a stably-exact category, then, the map

K(E) K(Stab(E))≃

is an equivalence.

In fact, we claim a more general phenomenon is happening: for stably-exact categories, in-
variance under passage to the stable envelope is equivalent to inverting resolving and op-resolving
functors.

Theorem 3.3 Let F : Exact∞ → E be a functor preserving filtered colimits. The following are
equivalent:

(i) For every stably-exact E , F sends the map E → Stab(E) to an equivalence.

(ii) For every bounded heart category C, F sends the map C♡ → C to an equivalence.

(iii) F sends every resolving and every op-resolving functor A → D with A,D stably-exact to
an equivalence.

Proof. Remark that (i) and (ii) are equivalent by Theorem 2.9, which also shows that (iii) implies
(ii) since F preserves filtered colimits. But Lemma 2.7 shows (iii) implies (ii), which concludes.

3.2 The theorem of the heart for laced K-theory
In this section, we draw some consequences of the previous generalization of the theorem of

the heart for K-theory of endomorphisms, even allowing coefficients in a suitable bimodule. Let us
first recall what they are.

Let C be a stable category, a C-bimodule M is an object of the category FunEx(C, Ind C). This
category is also equivalent to both EndL(Ind C), the category of colimit-preserving endofunctors of
Ind C, and FunEx(Cop ⊗ C, Sp), where Cop × C → Cop ⊗ C is by definition the initial functor from
Cop × C which is exact in both variables.
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Every stable category admits a canonical nonzero bimodule, given by the Yoneda embedding
(equivalently, idInd C or mapC(−,−) in the two other pictures).

Definition 3.4 Let M be a C-bimodule, we let Lace(C, M) denote the lax-equalizer of the Yoneda
embedding j to M , i.e. the following pullback of categories:

Lace(C, M) Ind(C)∆1

C Ind(C)× Ind(C)(j,M)

This is in particular a stable category by [NS17, II.1.5].

■ Example 3.5 Let C := Perf(R) be the category of compact modules over a ring spectra. Then, a
Perf(R)-bimodule is fully-determined by its value on R, i.e. is of the form M ⊗R − where M is a
non-necessarily compact R-bimodule.

Moreover, Lace(Perf(R), M⊗R−) is a well-known object: it is exactly the category End(R, M)
of M -parameterized endomorphisms whose objects are compact modules N with a map N →
M ⊗R N . ■

The formalism of lax-equalizers [NS17, Proposition II.1.5] shows that the objects of Lace(C, M)
are pairs (X, f : X →M(X)) and that if (X, f) and (Y, g) are objects of Lace(C, M), the mapping
spectra from (X, f) to (Y, g) in Lace(C, M) is given by the following equalizer:

mapC(X, Y ) mapInd(C)(X, M(Y ))
g∗

f∗◦M

Here we have suppressed every mention of the Yoneda embedding and view C as a full subcategory
of Ind C. As a consequence of this formula, arrows in Lace(C, M) are the datum of an arrow in C
and a homotopy making the obvious square commute.

Remark 3.6 This lax-equalizer construction also features in [ES21, Construction 3.2.5] for ad-
ditive categories, though we warn the reader that in order to account for the shift in the
equivalence Perf(R ⊕ M) ≃ Lace(Perf(R), M ⊗R −) for a connective ring spectra R and a
connective R-bimodule M (see Example 3.12 below), Elmanto and Sosnilo denote C ⊕M the
category Lace(C, ΣM).

We will show in an upcoming paper that Lace(C, M) deserves the name square-zero extension
by identifying the tangent category of CatEx

∞ at some stable C with the category of C-bimodules,
and further showing that the canonical functor sqz : TCatEx

∞ → CatEx
∞ is given by Lace.

For the time being, we do not need this full structure and will be content by working over a
fixed C. We will however need the following result:

Lemma 3.7 Let M be a C-bimodule. The canonical functor ι Lace(C, M)→ ι C is the unstraight-
ening of the functor ι C → S sending X to Map(X, M(X)).

Proof. Consider P the category given by the pullback

P TwAr(Ind C)

Cop × C Ind(C)op × Ind C(jop,M)

For a general category D, TwAr(D) → Dop × D classifies MapD(−,−), hence it follows that
P → Cop × C classifies the functor (X, Y ) 7→ Map(X, M(Y )). Then, the lemma follows from the
following pullback square:

ι Lace(C, M) P

ι C Cop × C∆
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where ∆ : ι C → Cop×C is the diagonal X 7→ (X, X), using the canonical identification ι C ≃ ι(Cop).
By pasting, the above square is cartesian as soon as the following square also is:

ι Lace(C, M) TwAr(Ind C)

ι C Ind(C)op × Ind C

By the explicit description of pullbacks in CatEx
∞ , we can replace the right vertical map by

ι TwAr(Ind C) → ι Ind(C)op × ι Ind C. Now, the claim follows from the fact that ι preserves pull-
backs, that ι Ind(C)op ≃ ι Ind(C) and ι TwAr(Ind C) ≃ ι Ar(Ind C).

If C admits a heart structure, there is a subclass of bimodules M which are suitably adapted
to the weight structure. This is the following definition:

Definition 3.8 Let C be a heart category. A C-bimodule M is said to be a weighted bimodule if
for every X ∈ C≤0 and Y ∈ C≥0, the following mapping spectra

mapInd C(X, M(Y ))

is connective.

■ Example 3.9 Let R be a connective ring spectra. Recall Perf(R) admits a weight structure, as
it is the stable envelope of the additive Proj(R). A R-bimodule is weighted if and only for every
connective N and coconnective P , the spectrum

mapModR
(P, M ⊗R N)

is connective. Applied to N = R, one checks that M is necessarily connective, and this is also
sufficient by the combination of the following two facts: whenever P is coconnective and Q is
connective, map(P, Q) is itself connective and M⊗R− preserves connectivity when M is connective.
Hence, weighted R-bimodules are exactly connective R-bimodules. ■

In the situation where C admits a weight structure and M is a weighted bimodule, Lace(C, M)
inherits a heart structure whose heart is Lace(C♡, M), the full subcategory of pairs (X, f) with
X ∈ C♡. This is not quite a weight structure, because the mapping spectra in Lace(C♡, M) need
only be (−1)-connective; in fact, it is this fact that started the investigation which led to this
article, and the introduction of heart structures.

Lemma 3.10 Let C be a heart category and M a weighted bimodule. Then, Lace(C, M) ad-
mits a heart structure given by the full subcategories Lace(C≥0, M) and Lace(C≤0, M) fibered
respectively over C≥0 and C≤0

Proof. Clearly, Lace(C≥0, M) and Lace(C≤0, M) are closed under retracts and extensions in
Lace(C, M), the former under pushouts and the latter under pullbacks.

If (Z, h : Z → M(Z)) is an object Lace(C, M), then there exists a weight decomposition
X → Z → ΣY , i.e. an exact sequence of C with X ∈ C≤0 and Y ∈ C≥0. We have two diagrams

Z M(Z) X M(X)

ΣY ΣM(Y ) Z M(Z)

h

p M(p) i M(i)

h

which it suffices to fill via the dotted arrows to get (iii) of Definition 2.3. For the left hand side,
we ought to show that the image of the map

map(ΣY, ΣM(Y )) p∗

−→ map(Z, ΣM(Y ))

contains M(p)◦h. The cofiber of this map is exactly map(X, ΣM(Y )) which is 1-connective. Hence
the above map is essentially surjective on π0 providing the wanted dotted arrow. A dual argument
deals with the other square.
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Remark 3.11 In the situation of the previous lemma, if the heart structure on C is in fact a
weight structure, Lace(C, M) verifies the following weaker verison of axiom (ii) of a weight
structure:

If (X, f : X →M(X)) and (Y, g : Y →M(Y )) with X ∈ C≤0 and Y ∈ C≥0, then

MapLace(C,M)((X, f), (Y, g))

is (−1)-connective. This follows from the aforementioned formula for this mapping spectra.

■ Example 3.12 If R is a connective ring spectrum and M a connective bimodule, then M ⊗R −
is weighted. Consequently, Remark 3.11 shows that Lace(Perf(R), ΣM ⊗R −) has indeed a weight
structure, whose heart is composed of objects of the form (N, 0 : N → ΣM ⊗R N) where N ∈
Proj(R). In particular, this heart is generated by one object as an additive category, namely
(R, 0 : R → ΣM). By Theorem 2.9, this implies that Lace(Perf(R), ΣM ⊗R −) is equivalent to
Perf(S), where S is the endomorphism ring spectrum of (R, 0 : R→ ΣM).

The underlying spectrum of S is R⊕M , as such an endomorphism is the datum of a R-linear
map R → R and two nullhomotopies for 0 : R → ΣM , i.e. a map R → ΩΣM = M . It also
follows that the induced ring structure is equivalent to the square-zero extension ring structure on
R⊕M . Hence, Lace(Perf(R), ΣM ⊗R −) ≃ Perf(R⊕M). Note that after applying K-theory, this
equivalence was the starting point of Dundas-McCarthy’s determination of stable K-theory in the
celebrated [DM94]. ■

Applying Theorem 3.1 to this situation, we have the following:

Corollary 3.13 Let C be a bounded heart structure and M a weighted bimodule. Denote
Lace(C♡, M) the full subcategory of Lace(C, M) fibered over C♡. Then, there is an equiva-
lence:

K(Lace(C♡, M)) K(Lace(C, M))≃

In particular, when the heart structure on C is a weight structure, the Yoneda embedding is
one such weighted C-bimodule. Hence, the previous Corollary specifies to the following:

Theorem 3.14 — Theorem of the heart for KEnd. Let C be a stable category equipped with a
bounded weight structure. Then, there is an equivalence

K(End(C♡)) K(End(C))≃

We finish this section by leveraging Corollary 3.13 to show that if C has a bounded heart
structure, then K(Lace(C, M)) commutes with sifted colimits taking values in weighted bimodules
M . This kind of argument plays a key role in the proof of the Dundas-Goodwillie-McCarthy
theorem (see [DGM13] for an account of this theorem in the setting of connective ring spectra),
and will be used in a future article to provide a new proof of this theorem in the context of stable
categories, without referring to ring spectra.

Proposition 3.15 Let C be a bounded heart category, then K(Lace(C, M)) preserves sifted col-
imits in M which take values in weighted bimodules.

Proof. Combining Lemma 3.10 and Theorem 3.1, we see that in the case where the sifted colimit
has values in weighted bimodules, it suffices to prove that K(Lace(C♡, M)) commutes with sifted
colimits.

Recall that Ω∞ : Sp≥0 → S preserves sifted colimits by [Lur17, 1.4.3.9] hence it suffices to show
the result for the space-valued delooped K-theory. Instead of the Q-construction, we will use the
description of this space as the geometric realization of the core of the S•-construction, thanks to
[Bar13, Theorem 3.10]. Since geometric realizations preserve colimits, it suffices to show that each
ι Sn Lace(C♡,−) preserves sifted colimits of weighted bimodules.

As a (necessary) warm-up, let us treat the first non-trivial case, n = 1, where we ought to show
that ι Lace(C♡, M) preserves sifted colimits in weighted M . We claim that for a fixed X ∈ C♡,
the space MapInd C(X, M(X)) commutes with sifted colimits in weighted M . Indeed, this is clear
at the level of the mapping spectra because X is compact in Ind C, and as we have already used
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Ω∞ : Sp≥0 → S preserves sifted colimits, so when M is weighted, we have the first claim.
But since ι Lace(C♡, M) is fibered over such spaces by 3.7, this extends to the whole space.

Indeed, the unstraightening of a functor is its lax-colimit and lax-colimits commute with sifted
colimits (combine the formula of [GHN17, Definition 2.9] and the fact that sifted colimits of spaces
commute to products).

Recall that Sn(Lace(C♡, M)) is the category of the following diagrams:

0 (X1,1, f1,1) (X1,2, f1,2) ... (X1,n, f1,n)

0 (X2,2, f2,2) ... (X2,n, f2,n)

... ... ...

0 (Xn,n, fn,n)

0

where (Xi,j , fi,j) ∈ Lace(C♡, M) and every square is exact. Of course, such a diagram is fully
determined by its first row but remark that not all first rows need to induce a diagram where every
object lies in Lace(C♡, M); in fact, this is already the case for C♡ in C.

Denote Sn(M) the induced bimodule on Sn(C), obtained by applying M to the diagrams
of the above shape, then the above category is none other than Lace(Sn(C♡), Sn(M)), viewed
as a full subcategory of Lace(Sn(C), Sn(M)). The arguments of the case n = 1 will conclude,
provided we can show that Sn(M) is still a weighted bimodule, i.e. for every object X := (Xi,j) ∈
Lace(Sn(C♡), Sn(M)) the mapping spectra map(X, Sn(M)(X)) is connective. Such a mapping
spectra is given by iterated pullbacks (because in C, the above diagrams are exactly equivalent to
the datum of the first row), hence we have to show that

map(X1,1, M(X1,1))×map(X1,1,M(X1,2)) ...×map(X1,n−1,M(X1,n)) map(X1,n, M(X1,n))

is connective, where all mapping spectra are taken in Ind C. All of the terms appearing in the
above are connective, so by induction, it suffices to show that every map(X1,i+1, M(X1,i+1)) →
map(X1,i, M(X1,i+1)) is surjective on π0. But X1,i ↪→ X1,i+1 has its cofiber in C♡ and M is exact
and weighted, which concludes.

Remark 3.16 Let us mention that we believe Corollary 3.13 (and thus subsequently Theorem
3.14) to be sharp insofar as if C admits a bounded heart structure and M is a bimodule which
satisfies the following weaker version of being weighted:

• (ii) For any X ∈ C≤0 and Y ∈ C≥0, the mapping spectra mapInd C(X, M(Y )) is (−1)-
connective

then, we expect the statements to generally fail. Indeed, otherwise it would follow from consid-
erations leading to the proof of the Dundas-Goodwillie-McCarthy theorem that cyclic K-theory,
the fiber of K(Lace(C; ΣM)) → K(C), coincides with TR(C, ΣM), topological relative homol-
ogy. In particular, it would follow that for M a connective R-bimodule and R a connective
ring spectrum, Kcyc

0 (R, M) ≃ π0 TR(R, M); but as in explained in [DKNP22], π0 TR(R, M)
identifies with the big Witt vectors whereas cyclic K-theory only identifies with rational Witt
vectors which in general only complete to the big Witt vectors for the t-adic topology, and
otherwise do not coincide. We hope to prove the above considerations in an upcoming article.
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