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Abstract
We prove a generalization of the fundamental theorem of algebraic K-theory for Verdier-

localizing functors by extending the proof for algebraic K-theory of spaces to the realm of
stable ∞-categories. The formula behaves much better for Karoubi-localizing functors, the
Verdier-localizing invariants which are additionally invariant under idempotent completion.

This general fundamental theorem specializes to new formulas in the context of non-
connective K-theory, topological Hochschild homology and topological cyclic homology as
well as connective K-theory of stable ∞-categories, and generalizes several known formulas for
algebraic K-theory of spaces or connective K-theory of ordinary rings, ring spectra, schemes
and S-algebras.
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1 Introduction

In algebraic K-theory of rings, the celebrated fundamental theorem, also known as the Bass-
Heller-Swan formula, states that, for any ring R and any integer n ∈ Z, there is a natural isomor-
phism:

Kn(R[t, t−1]) ∼= Kn(R)⊕Kn−1(R)⊕ (N+K)n(R)⊕ (N−K)n(R)
where N±K(R) are so called nilterms, isomorphic functors obtained as the kernel of the split
morphism Kn(R) → Kn(R[t]) which vanish when R is a regular ring. The K−1(R) appearing in
degree zero is the first group of negative K-theory of rings as defined by Bass, and one can think
of this formula as providing a iterative definition for the negative K-groups (this was actually the
historical appraoch by Bass). This result was proved by Bass-Heller-Swan for K0, K1 and negative
K-groups and later in full generality for non-negative integers by Quillen, whose proof was pre-
sented by Grayson in [Gra76]. It was then extended to schemes by Thomason-Trobaugh in [TT90].

In [HKV+01], Hüttemann, Klein, Vogell, Waldhausen and Williams proved a similar equivalence
for the finitely-dominated variant of A(X) the algebraic K-theory of a space X, originally defined
by the fourth author. If X is a space, their version of A-theory, Afd(X), is defined to be the
K-theory of the Waldhausen category Rfd(X) of finitely-dominated retracts of X. They showed
in loc. cit. the following splitting:

Afd(X × S1) ≃ Afd(X)× BAfd(X)×N+A
fd(X)×N−A

fd(X)

where N±A
fd(X) are homeomorphic nilterms and BAfd(X) is a non-connective but canonical de-

looping of Afd(X). The nilterm are also obtained as some kernel, though there is no space that
plays the role of R[t] in this context. This can be thought as an extension of the fundamental
theorem to some class of ring spectra1: indeed, A(X) is equivalently defined as the K-theory of
the ring spectrum S[ΩX] and S[Ω(X ×S1)] ≃ S[ΩX][t, t−1]. The formula above is then simply the
fundamental theorem for these "brave new rings".

Other extensions of this fundamental theorem have been made in recent years, expanding
the known cases: Lück and Steimle have proven a twisted formula for both connective and non-
connective K-theory of additive categories in [LS16] and Fontes and Ogle have shown the theorem
holds for connective S-algebras in [FO18]. Moreover, Hüttemann has extended the result for
strongly Z-graded rings in [Hü20].

More recently, the result has been shown to hold for a greater class of invariants than just
flavors of K-theory. In [Tab12], Tabuada proved the formula held with vanishing nilterms for every
A1-homotopy invariant, derived Morita-invariant functor from dg-categories which was further-
more localizing. In the more geometric context of spectral algebraic geometry, Cisinski and Khan
showed that for localizing invariants of stable R-linear ∞-category, where R is a connective ring
spectra, the formula held as well (see Theorem 4.3.1 in [CK20]).

The motivation of this article is to provide a general statement which encompasses many of
the above formulas, similarly to the last two cited papers. Lured by recent development, such as
[BGT13] or [Bar16], which have made clear the practicality and the usefulness of higher category
theory for K-theoretic purposes, we will prove a higher categorical version of the fundamental
theorem and, as in [CK20], show that it not only holds for algebraic K-theory but also for a whole
array of invariants which satisfy a key property of localization, the precise flavor of it we will explain
in the following. Amongst such localizing invariants are notably topological Hochschild homology,
topological cyclic homology and non-connective K-theory. In particular, our main result recovers
as a special case the fundamental theorem of algebraic K-theory for schemes as in [TT90] and
connective S-algebras as in [FO18], the A-theoretic version of [HKV+01] and provides a different
proof of the central case of [CK20]. We do not however generalize the twisted versions of [LS16]
and [Hü20].

In contrast to [CK20] however, our proof avoids references to E∞-ring spectra or more techni-
cal ideas of spectral algebraic geometry (in particular, it does not rely on any result of [Lurng])
and is purely contained in the theory of stable ∞-categories. This allows for finer control and
thus slightly refined statements, which involve stable ∞-categories which may not be idempotent

1By which we mean E1-ring spectra
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complete, unlike Cisinski and Khan.

Finally, let us mention that in the upcoming fourth part [CDH+23d] of the series of hermitian
K-theory ([CDH+23a, CDH+23b, CDH+23c]), the authors prove a similar Bass-Heller-Swan for-
mula for hermitian K-theory and more generally for Poincaré-Verdier localizing functors. However,
due to technicalities arising from the setting of Poincaré∞-categories, the proof they supply differs
from the classical proof, including the one we present here. Notably, it does not feature a projective
line.

Notations and conventions. As we explained, the higher categorical setting is one of the
motivation of this article. Thus we adopt throughout this paper the language of ∞-categories as
developed by Jacob Lurie in Higher Topos Theory [Lur08] and Higher Algebra [Lur17]. We recall
now the main concepts and notations we will use.

A stable ∞-category is an ∞-category with a zero object — we say such ∞-categories are
pointed — such that every morphism has a fiber and a cofiber and additionally, that fiber and
cofiber sequences coincide. Stable ∞-categories admit all finite limits and colimits but also, carte-
sian squares coincide with cocartesian squares — and are called exact squares. Functors preserving
finite limits and colimits are called exact functors.

We will denote Cat∞ the∞-category of (small)∞-categories, and CatEx
∞ the non-full subcate-

gory of stable∞-categories and exact functors between them. When C is an∞-category, we denote
Ind(C) its Ind-construction, Cc its full subcategory of compact object and Idem(C) its idempotent
completion. In particular, [Lur08] 5.4.2.4 gives an equivalence Ind(C)c ≃ Idem(C). When C is
stable, so are all of the above ∞-categories.

We let CatEx,Idem
∞ denote the full subcategory of CatEx

∞ of idempotent-complete stable ∞-
category. Finally, S will denote the∞-category of spaces and Sp the stable∞-category of spectra,
which is the stabilisation of the former.

Main results. In the original proof of [Gra76], the fundamental theorem for algebraic K-theory
of rings is deduced from a property of K-theory regarding localisation of rings. We proceed by a
categorification of this notion, following the ideas of [BGT13], which have realized (non-connective)
algebraic K-theory as a functor built from the universal localizing invariant.

To properly capture the exact flavour of this localization, we adopt however a different semantic
from that of [BGT13] or [CK20], which is inspired from the series of papers on hermitian K-theory
for higher categories [CDH+23a, CDH+23b, CDH+23c, CDH+23d]. First, let us define three classes
of cofibers of CatEx

∞ :

Definition 1.1 A Verdier sequence is a sequence of CatEx
∞

C D Ei p

which is both a fiber and a cofiber in CatEx
∞ . Exact functors i fitting in such sequences are

called Verdier inclusions and p Verdier projections.

If p has a left adjoint (resp. right), then the Verdier sequence is called left-split (resp. right-
split). Sequences that are both left- and right-split are called split-Verdier sequences.

A Karoubi sequence is a sequence of CatEx
∞

C D Ei p

which is sent by the idempotent-completion functor Idem to both a fiber and a cofiber in
CatEx,Idem

∞ , the full subcategory of CatEx
∞ of stable idempotent-complete ∞-categories. Exact

functors i fitting in such sequences are called Karoubi inclusions and p Karoubi projections.

We will characterize Verdier projections and Karoubi projections; in particular, we will see
that Verdier sequences are in particular Karoubi sequences. Functors CatEx

∞ → Sp sending either
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of those three classes of cofibers to exact sequences of spectra will be our different flavours of
localizing invariants:

Definition 1.2 A reduced functor F : CatEx
∞ → Sp is called:

• additive or split-Verdier localizing if it sends split-Verdier sequences to exact sequences
• Verdier localizing if it sends Verdier sequences to exact sequences
• Karoubi localizing if it sends Karoubi sequences to exact sequences

By the remark above, Karoubi-localizing functors are in particular Verdier-localizing. In fact,
we will see that they are exactly the Verdier-localizing functors that are invariant under idempotent
completion in Proposition 3.12.

Note that we do not ask that localizing invariants preserve filtered colimits. Although this
is the case of many of the examples we will encounter, such as algebraic K-theory or topological
Hochschild homology, it will not be needed to prove our results. In this, we differ from the
definitions of [BGT13] and adopt the conventions of [CDH+23b] that separate the two properties.

Our definitions being only slightly different from theirs, the full results of [BGT13] could be
tweaked to apply to our setting. However, for simplicity and because they do not play a part in
the further parts of this article, we have chosen to omit the discussion of non-commutative motives
and associated results.

In our categorified setting, the ring of Laurent polynomials R[t, t−1] appearing in the Bass-
Heller-Swan formula will be replaced by some stable ∞-category that we preemptively denote
S1 ⊗ C. Beware that what we denote ⊗ is not the usual tensor product of symmetrical monoidal
structures on CatEx

∞ or Cat∞ but a hybrid version of the two.

First recall the usual tensor product of CatEx
∞ . If C, D are stable∞-categories, then there exists

a stable ∞-category which is universal for functors from C × D which are exact in both variables.
Since we are interested in tensoring a stable C by any∞-category K, which need not be stable, we
will drop the exactness requirement on one side. Hence, our K ⊗ C is universal for functors from
K × C which are exact only in the second variable.

Notice that when C and D are idempotent complete, their tensor product need not be and
the internal tensor product of CatEx,Idem

∞ is obtained by taking the idempotent completion of the
former. Similarly, when C is idempotent complete, the tensoring K ⊗ C need not be but we can
consider its idempotent completion K⊗̂C. Let R be a ring spectrum and denote Perf(R) the stable
∞-category of compact R-modules, then we have an equivalence S1⊗̂Perf(R) ≃ Perf(R[t, t−1]).
Indeed, this follows from the explicit construction of Proposition 2.2, which realizes S1⊗̂Perf(R)
as the compact objects of Fun((S1)op,ModR), and the identification of R[t, t−1]-modules as R-
modules with a Z-action.

Denote S1
± the category BN, where the ± comes from either identifying N as non-negative or

non-positive integers in Z, and let N±F (C) be the cokernel of F (C)→ F (S1
±⊗C) for a stable C. Our

first main result relates F (S1 ⊗ C), N±F (C) and F (C) for F Verdier-localizing and C idempotent
complete.

Theorem 1.3 Let C be a stable idempotent-complete∞-category and F : CatEx
∞ → Sp a Verdier-

localizing invariant, then, we have the following equivalence of spectra:

F (S1 ⊗ C) ≃ F (C)⊕ ΣF (C)⊕N+F (C)⊕N−F (C)

where N±F (C) are the nil-terms previously defined.

The above formula is not quite the Bass-Heller-Swan formula, even for rings: even though we
supposed C idempotent complete, S1 ⊗ C need not be; such is the case of C = Perf(R). To get
the correct statement, one needs to replaced S1 ⊗ C by its idempotent-completion S1⊗̂C. This is
automatic in the special case of Karoubi-localizing invariants, which is exactly further supposing
invariance under idempotent completion.
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Theorem 1.4 — Generalized Bass-Heller-Swan formula. Let C be a stable ∞-category and F :
CatEx

∞ → Sp a Karoubi-localizing invariant, then, we have the following equivalence of spectra:

F (S1⊗̂C) ≃ F (C)⊕ ΣF (C)⊕N+F (C)⊕N−F (C)

Note that we also need no longer take C idempotent complete, since Idem(S1⊗C) ≃ Idem(S1⊗
Idem(C)). In particular, non-connective K-theory is Karoubi localizing and so we have the following
version of the fundamental theorem for non-connective K-theory:

K(S1⊗̂C) ≃ K(C)⊕ ΣK(C)⊕N+K(C)⊕N−K(C)

Taking C to be Perf(R) as above, where R is a ring spectrum, gives a formula for non-connective
K-theory of ring spectra, generalizing [Gra76] and [FO18]. In particular, when R = S[ΩX], this is
a non-connective version of the main result of [HKV+01].

Taking connective covers in the formula above gives an improved version of the formula one
would obtain by applying 1.3 for connective K-theory, which is only Verdier-localizing. This is
the actual formula appearing in [Gra76] or [HKV+01] in their above-mentioned specific cases. In
particular, the canonical non-connective delooping of K(C) appears here as the connective cover
of ΣK(C). The connective formula given by 1.3 for connective K-theory misses specifically the
non-connective term appearing in π0.

Outline of the proof. As expected, the proof of our main result relies on the idea of a projec-
tive line, as found in [HKV+01], [CK20] or originally [Gra76] but generalized to our context. There
are two maps S1

± = BN± → BZ = S1 depending on the identification of N as either non-positive
or non-negative integers, which induce exact functors S1

± ⊗ C → S1 ⊗ C for any stable C, which
we call the telescopes. S1

± ⊗ C models the Spec(A[t±1]) appearing in [Gra76]. The pullback of the
telescopes is the projective line of C, denoted P(C).

The proof of Theorem 1.3 relies on the ability to express the image of P(C) under a Verdier-
localizing invariant F in two different ways, one by the preservation of specific pullbacks which is
a consequence of the property of being Verdier-localizing, and the other through a direct calcula-
tion, which is reliant on the fact that C is idempotent complete, hence the hypothesis. This last
computation is a version of the projective bundle formula of Section 4.2 in [CK20], whose proof has
been expunged from any reference to Lurie’s Spectral Algebraic Geometry (see [Lurng]). Indeed,
we will show:

Proposition 1.5 For any Verdier-localizing invariant F , we have an equivalence F (P(C)) ≃ F (C)⊕
F (C). Moreover, the following square is cartesian:

F (P(C)) F (S1
+ ⊗ C)

F (S1
− ⊗ C) F (S1 ⊗ C)

The fact that the square is cartesian is a direct, abstract consequence of the Verdier-localizing
character of our functor F . The equivalence F (P(C)) = F (C) ⊕ F (C) relies on the other hand on
an actual concrete calculation, going through explicit descriptions of objects at hand. This is the
part that is the longer and the more intricate of the two.

Organisation of the article. The section 2 and 3 are dedicated to preliminaries regarding re-
spectively the tensor construction and the notions of Verdier and Karoubi-localizing functors, both
outlined previously. The tensor product of section 2 is an algebraic version of the construction of
6.4.1 [CDH+23a] and section 3 mostly extracts from the appendix of [CDH+23b] the propositions
and lemmas relevant to our problem.

Section 4 is where most of the magic takes place. We first define the projective line and relevant
objects to prove the cartesian square part of Proposition 1.5, and in the following subsection, we
make the explicit calculation of F (P(C)) for C a stable ∞-category and F Verdier-localizing. This
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is the most technical part of this article.

In section 5, we finish the proof of Theorems 1.3 and 1.4, and draw the many consequences it
has for algebraic K-theory, its non-connective version as well as topological Hochschild homology
and topological cyclic homology.
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2 Semi-exact tensoring of stable ∞-categories
In this section, we are interested in a tensor-like construction between a stable∞-category and

a general simplicial set K. Ultimately, K will either be BZ or BN, the ∞-categories with one
object and Z or N as (discrete) spaces of morphisms; the semi-exact tensoring of BN and C will be
a stable ∞-category which we will think as polynomials in C, whereas the tensoring by BZ will be
Laurent polynomials.

Recall that a stable∞-category is a pointed∞-category, i.e. an∞-category with a zero object,
such that every morphism has a fiber and a cofiber and additionally, that fiber sequences and
cofiber sequences coincide. Here, every (co)limit is to be understood in the ∞-categorical world
and thus corresponds to a homotopy (co)limit. The study of stable ∞-categories is developed in
the first chapter of [Lur17]. In particular, it is shown that stable ∞-categories admit all of the
finite limits and colimits, and cartesian squares coincide with cocartesian squares. Exact functors
are functors preserving either finite limits or colimits and they in fact preserve both.

There are multiple constructions of∞-categories which are tensor products in the correct cate-
gory. For instance, when C and D are ∞-categories, C ×D corepresents Fun(C,Fun(D,−)). When
C, D are stable, FunEx(C,FunEx(D,−)) is also corepresentable, this time in the enriched setting
of CatEx

∞ , and if C, D are furthermore presentable, FunL(C,FunL(D,−)) is again internally corep-
resentable in PrL

Ex, the ∞-category of presentable stable ∞-categories and left functors.

The tensor product we will use in this article is an hybridization of the first two. Indeed, we
want to capture the stable nature of our stable ∞-categories, which we require to be able to talk
about their K-theory, but we also want to tensor them by ∞-groupoids which need not be stable,
like BZ or BN. We also want the result to be stable, so that we can take its K-theory as well.

Hence, we take our tensor product to be corepresenting the functor Fun(K,FunEx(C,−)), i.e.
to be universal for functors from K × C which are exact only in the second variable.

Definition 2.1 Let C be a stable ∞-categories and K a simplicial set. We define K ⊗ C, the
semi-exact tensoring of C by K, by the following universal property:

FunEx(K ⊗ C,D) ≃ Fun(K,FunEx(C,D))

This construction is functorial in K and C.

Note that this is not symmetrical in K and C when both are stable ∞-categories, and does not
coincide with the usual tensor product of CatEx

∞ , which is universal for functors K ×C → D exact
in both variables.

The fact that K ⊗ C exists is a consequence of [Lur08, Proposition 5.3.6.2]. Indeed, exact
functors between stable ∞-categories are exactly finite-colimits preserving functors by [Lur17,
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1.1.4.1], so K ⊗ C can be obtained as the universal ∞-category for functors out of K × C which
send R, the finite cocones of K × C which are constant in the first variable and colimits in the
second variable, to colimits at their target. This is exactly described by the construction PK

R(K×C)
given by [Lur08, 5.3.6.2] where K designates all the finite cocones of K × C. In fact, the proof of
this proposition even gives an explicit description, which can be reformulated as in the following
proposition:

Proposition 2.2 K⊗C can be realized as the smallest subcategory of Fun(Kop, Ind(C)) stable by
finite colimits and containing Lk,X , the left Kan extensions of {k} → Ind(C) constant in X ∈ C
along the inclusions {k} ⊂ Kop.

Proof. When C has all finite colimits, Ind(C) can be identified to the full subcategory of finite
colimit-preserving ∞-presheaves, i.e. functors Cop → S which preserve finite colimits. This is
another consequence of [Lur08, 5.3.6.2], which is explicitly stated in Example 5.3.6.8 of loc. cit.
In particular, for a stable C, Ind(C) is cocomplete and the left Kan extensions Lk,X exist for any
k ∈ K0 and X ∈ C, hence our claimed construction for K ⊗ C is well-defined.

Let us now unfold this construction and see why it coincides with that of [Lur08, 5.3.6.2]. In-
deed, by what we explained above, Fun(Kop, Ind(C)) can be identified with functors of Fun(Kop×
Cop, S) which preserve finite colimits in the second variable. To match [Lur08, 5.3.6.2], we need
to show our construction identifies with the essential image of L ◦ j0 and is closed under finite
colimits, where L is the left adjoint to the inclusion Fun(Kop, Ind(C)) ⊂ Fun(Kop ×Cop, S) and j0
is the Yoneda embedding of K × C.

The closure under finite colimits is a part our definition, hence it suffices to show that Lk,X ≃
L ◦ j0(k,X) for k ∈ K0 and X ∈ C. Let F be a functor K → Ind(C). By [Lur08, 4.3.3.7], we have
the following equivalence:

MapFun(Kop,Ind(C))(Lk,X , F ) ≃ MapInd(C)(X,F (k)) ≃ F (k)(X)

where the second equivalence is given by the Yoneda lemma. Differently stated, this is saying that
Lk,X corepresents the evaluation functor Fun(Kop, Ind(C)) → S sending F : Kop → Ind(C) to
F (k)(X). But, by adjunction, L ◦ j0(k,X) verifies:

MapFun(Kop,Ind(C))(L ◦ j0(k,X), F ) ≃ MapFun(Kop×Cop,S)(j0(k,X), F̃ )

where j0(k,X) is the Yoneda embedding at (k,X) and F̃ is the "uncurried" functor. Hence, it
follows from the Yoneda lemma that L ◦ j0(k,X) is corepresenting the same functor as Lk,X , since
F̃ (k,X) ≃ F (k)(X) by definition, and yet another instance of Yoneda gives us the wanted equiva-
lence. This shows that K ⊗C is universal for functors K ×C → D preserving finite colimits in the
second variable.

Moreover, K⊗C is a stable∞-category, since it is a subcategory of the stable Fun(Kop, Ind(C)
which is itself stable by finite colimits and by the loop functor Ω, since ΩLk,X = Lk,ΩX and Ω
commutes with finite colimits. Since finite colimit-preserving functors between stable∞-categories
are exact, we have the universal property of the definition, as wanted.

In [CDH+23a, Section 6.4.1], the authors define the hermitian version of this construction.
Because their hermitian functors are generally taken to be from Cop, their construction involves
Pro(C) and right Kan extensions but this is the only difference. In particular, our proof of the
proposition is in all points similar to Remark 6.4.2 establishing the universal property.

Remark 2.3 Since K⊗C is defined by a universal property, it automatically acquires functoriality
by the Yoneda lemma. Hence we have defined a functor −⊗− : Cat∞×CatEx

∞ → CatEx
∞ . We

will give an explicit description of the induced morphisms later in the section.

■ Example 2.4 When R is a ring spectrum, we will see that S1 ⊗ Perf(R) identifies as a dense
subcategory of Perf(R[t, t−1]), where Perf(R) are R-modules which are compact in RMod and
dense means that every object of Perf(R[t, t−1]) is a retract of an object of S1 ⊗ Perf(R). The
same will be true for S1 ⊗ Fun(X,Sp)c and Fun(X × S1,Sp)c. ■
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In general, as the examples above show, K ⊗ C need not be idempotent complete even if C is.
However, we can identify its idempotent completion, and in fact even its Ind-construction. The
following lemma is a generalization of a result of [Lur14, Lecture 21, Proposition 6].

Lemma 2.5 LetK be a simplicial set and C an∞-category, then the∞-category Fun(Kop, Ind(C))
is compactly generated and in fact, we even have

Ind(K ⊗ C) ≃ Fun(Kop, Ind(C))

which means that Fun(Kop, Ind(C)) is generated by K ⊗ C.

Proof. The first claim follows from the second, since K ⊗ C is contained in the full subcategory
of compact objects. Indeed, the left Kan extension is left adjoint to a filtered colimit-preserving
functor, hence it preserves compact objects and C is compact in Ind(C). Thus, it suffices to prove
the announced equivalence.

Since Fun(Kop, Ind(C)) is cocomplete, the inclusion K ⊗ C ⊂ Fun(Kop, Ind(C)) extends to a
fully-faithful Ind(K⊗C)→ Fun(Kop, Ind(C)), which we have to show is essentially surjective. But
this is a map preserving colimits between presentable ∞-categories, hence it has a right adjoint R
by the adjoint functor theorem [Lur08, 5.5.2.9], and it suffices to show that R is conservative.

Let f : A → B be a map of Fun(Kop, Ind(C)), i.e. a natural transformation between functors
Kop → Ind(C), such that R(f) is an equivalence. Then, precomposition by R(f) induces the
following equivalence for any k ∈ K and X ∈ C:

MapFun(K,Ind(C))(Lk,X , A) ≃ MapFun(K,Ind(C))(Lk,X , B)

By the universal property of left Kan extensions, it follows that

MapInd(C)(X,A(k)) ≃ MapInd(C)(X,B(k))

for any X ∈ C. Since C generates Ind(C) under filtered colimits and X is compact in Ind(C),
we conclude that f induces an equivalence A(k) ≃ B(k) for any k ∈ K. Hence f is a natural
equivalence as wanted.

Remark 2.6 We mentioned in introduction a third tensor-like product, for presentable sta-
ble ∞-categories, which is for instance the one used in [BGT13]. It induces a tensor prod-
uct ⊗̂ between stable ∞-categories C, D which is always idempotent complete by letting
C⊗̂D : (Ind(C) ⊗L Ind(D))c, where ⊗L is the symmetric monoidal structure of presentable
stable ∞-categories with the left functors.

We can define a hybrid version, K⊗̂C := (K⊗LInd(C))c where ⊗L is defined by the following
universal propertya, for presentable stable C and D:

FunL(K ⊗L C,D) ≃ Fun(K,FunL(C,D))

Since FunL(Ind(A),D) ≃ FunEx(A,D) for stable A and D, we have that K ⊗L Ind(C) =
Ind(K ⊗ C) by comparing universal properties. Thus, we have K⊗̂C ≃ Idem(K ⊗ C) by taking
compacts objects on both sides.

With the lemma above, we have an equivalence K ⊗L Ind(C) ≃ Fun(Kop, Ind(C)) which
yields K⊗̂C ≃ Fun(Kop, Ind(C))c. For Karoubi-localizing invariants, which we will introduce in
the following section and are invariant under idempotent completion, our main result Theorem
1.3 is also true for ⊗̂, which is often quite easier to identify.

aWhich exists and gives a presentable stable ∞-category for similar reasons as in proposition 2.2

As we mentioned in Remark 2.3, − ⊗ C is functorial. Our goal now is to identify the induced
exact functor A⊗ C → B ⊗ C for f : A→ B, under the explicit description given by 2.2.
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If f : A→ B is a map of simplicial set, then by [Lur08, 4.3.3.7] , we have an adjoint pair:

Fun(A, Ind(C)) Fun(B, Ind(C))
f!

f∗
⊥

where f! denotes the functor of left Kan extension along f and f∗ precomposition by f . Using
the notations of the explicit construction of 2.2, f!La,X ≃ Lf(a),X for any a ∈ A0, X ∈ Ind(C)
since the left Kan extension of a composite is the composition of left Kan extension. Being a left
adjoint, f! commutes with colimits thus restrict to an exact functor:

f ⊗ C : A⊗ C → B ⊗ C

which sends La,X to Lf(a),X . In particular, the Ind-completion of this functor is f! although remark
that in general, f∗ need not preserve the Lb,X so the adjunction does not descend and we only have
an explicit adjoint when Ind-completing. By universality, the functorial map f⊗C : A⊗C → B⊗C
must induce for any D:

FunEx(B ⊗ C,D) ≃ Fun(B,FunEx(C,D))→ Fun(A,FunEx(C,D)) ≃ FunEx(A⊗ C,D)

where the middle map is precomposition by f . An exact functor F : B⊗C → D is characterized by
the images F (Lb,X) for every b ∈ B and X ∈ C, and the above map sends such an F to the functor
F̃ characterized by the data F̃ (La,X) ≃ F (Lf(a),X). But this is also exactly what the restriction
of f! does. Hence by Yoneda, the restricted left Kan extension of f is equivalent to the map f ⊗C
functorially induced by f .

We will need to consider some of the less well-behaved precomposition by f∗ in our subsequent
sections. In our examples, the map A → B will be the inclusion of a unique point, and in that
context, the precomposition naturally lands in Ind(C).

Definition 2.7 Let K be a 0-reduced simplicial set, then precomposition by the inclusion ∗ ⊂ K
induces a functor fgtK : K ⊗ C → Fun(∗, Ind(C)) ≃ Ind(C) forgetting the K-part of the tensor.
We will call it the forgetful functor of K ⊗ C.

Remark 2.8 The argument works mutatis mutandis to show that if F : C → D is exact between
stable ∞-categories and K is a simplicial set, then the restriction of the left Kan extension
functor along F induces

K ⊗ F : K ⊗ C → K ⊗D

mapping Lk,X to Lk,F (X), and K ⊗ F is indeed the map given by functoriality of ⊗.

3 Verdier, Karoubi sequences and localizing invariants
This section is dedicated to establishing terminology and useful results related to (split-)Verdier

and Karoubi invariants.

These ideas were first introduced in [BGT13] under the name of additive and localizing invari-
ants. However our setting fits more naturally in a middle-ground of those two notions, which was
notably developed in Appendix A of [CDH+23b], called Verdier localizing invariants. We adopt
their terminology in the following: the localizing invariants of [BGT13] correspond to Karoubi local-
izing invariants for us, and the additive ones to split-Verdier localizing. Appendix A of [CDH+23b],
which will serve as our reference of choice for this material, gives a precise comparison of all the
notions in its introductory remark.

3.1 Verdier and Karoubi sequences
We recall here an array of definitions and results we will need in the following. Unless specified,

they are coming from appendix A of [CDH+23b]. First, let us define the central object of this
section, Verdier sequences.
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Definition 3.1 A Verdier sequence is a sequence of CatEx
∞

C D Ei p

which is both a fiber and a cofiber in CatEx
∞ . Exact functors i fitting in such sequences are

called Verdier inclusions and p Verdier projections.

If p has a left adjoint (resp. right), then the Verdier sequence is called left-split (resp. right-
split). Sequences that are both left- and right-split are called split Verdier sequences; they are
the exact sequences of [BGT13].

Recall that there is a functor Idem : CatEx
∞ → CatEx,Idem

∞ computing the idempotent-completion
of an ∞-category, which is left adjoint to the inclusion. In the stable setting, it preserves both
limits and colimits by [CDH+23b, A.3.3]. Hence, sequences of CatEx

∞ that become fiber-cofibers
after applying Idem form a more general class, the Karoubi sequences:

Definition 3.2 A Karoubi sequence is a sequence of CatEx
∞

C D Ei p

which is sent by the idempotent-completion functor Idem to both a fiber and a cofiber in
CatEx,Idem

∞ . Exact functors i fitting in such sequences are called Karoubi inclusions and p
Karoubi projections.

Remark 3.3 Remark that the preceding definition asks the sequence to be a fiber-cofiber in
CatEx,Idem

∞ and not CatEx
∞ . Since the inclusion CatEx,Idem

∞ ⊂ CatEx
∞ only preserves limits in

general, the idempotent completion of a Verdier sequence is only a Karoubi sequence, and not a
Verdier one when regarded as a sequence of CatEx

∞ . In particular, there are Karoubi sequences
of idempotent-complete ∞-categories which are not Verdier sequences.

It will be convenient to have a way to know whether a functor f : C → D fits in a Verdier
sequence. To this intent, we have the following criterion for Verdier projections and Verdier inclu-
sions, which is extracted from A.1.6 and A.1.9 of [CDH+23b].

Proposition 3.4 Let p : C → D be an exact functor between stable ∞-categories. Then, the
following are equivalent:

1. p is a Verdier projection
2. p is a localisation at some collection of arrows W, i.e. p∗ : Fun(D, E) → Fun(C, E) is

fully-faithful for any ∞-category E with essential image functors C → E which invert W.

and the following are also equivalent:

1. p is a Verdier inclusion
2. p is fully-faithful and has essential image closed under retracts in D

Note that what we call localisation are the functors of Warning 5.2.7.3 of [Lur08] and we reserve
the term Bousfield localisation for what Lurie calls a localisation, which is asking for a fully-faithful
right adjoint.

The localizations that are Bousfield are exactly those having a right adjoint, which leads to the
following criterion for left-split and right-split Verdier projections, extracted from the equivalence
between (i) and (iv) of [CDH+23b, A.2.3]:

Proposition 3.5 Let there be a sequence e : C D Ef p of exact functors with vanishing
composite. Then, the following are equivalent:

1. e is a left-split (resp. right-split) Verdier sequence
2. e is a cofiber sequence such that f is fully-faithful and has a left (resp. right) adjoint g
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3. e is a fiber sequence such that p has a fully-faithful left (resp. right) adjoint q

When either of the propositions is satisfied, then the sequence of adjoints E D Cq g is
a right-split (resp. left-split) Verdier sequence.

Finally, we present the following criterion for Karoubi projections and injections, which is
[CDH+23b, A.3.8]:

Proposition 3.6 An exact functor f : C → D is a Karoubi injection if and only if it is fully-
faithful and a Karoubi projection if it has dense image and the induced f : C → im f is a
Verdier projection.

The discussion above concerns fiber-cofiber sequences and but we will need more generally
properties about squares.

Definition 3.7 A cartesian square of CatEx
∞

C D

E F

p

is said to be a split-Verdier (resp. Verdier, resp. Karoubi) square if p is a split-Verdier (resp.
Verdier, resp. Karoubi) projection.

The following is an algebraic version of [CDH+23b, 1.5.2.(iii)], which is proven in the hermitian
context:

Lemma 3.8 A Verdier square is also cocartesian in CatEx
∞ . The same goes for Karoubi square in

CatIdem
∞ after idempotent completion.

Proof. Given a Verdier square:
C D

E F

q p

then q is also a Verdier projection by [CDH+23b, A.1.11] , and the square extends to a diagram of
cartesian squares by taking G to be the fiber of q:

G C D

0 E F

q p

The left-square is cartesian and cocartesian, because q is a Verdier projection, and so the external
rectangle is cartesian by the pasting law. Since p is a Karoubi projection, the external square is
also cocartesian and thus the pasting law applies to give us that the right square is cocartesian.

The same proof works mutatis mutandis for Karoubi squares after idempotent completion.

3.2 Verdier- and Karoubi-localizing invariants
Recall that a functor F : C → D between pointed categories is called reduced if it preserves

zero objects. We are interested in the following classes of reduced functors:

Definition 3.9 Let E be a ∞-category with finite limits. A reduced functor F : CatEx
∞ → E is

called:

• additive or split-Verdier localizing if it sends split-Verdier squares to cartesian squares in
E

11



• Verdier localizing if it sends Verdier squares to cartesian squares in E
• Karoubi localizing if it sends Karoubi squares to cartesian squares in E

Since split-Verdier sequences are Verdier and Verdier sequences are Karoubi, the above list is
ordered so that each property implies those above it.

Remark 3.10 The original introduction of additive and localizing functors of [BGT13] asked
furthermore that the functors preserve filtered colimits. However, this hypothesis is unused for
our applications, hence we adopt a similar convention to [CDH+23b, Definition 1.5.4], separating
the localizing property from the filtered-colimit preservation.

When the target category E is stable, our definition of split-Verdier, Verdier and Karoubi
localizing invariants is actually equivalent to a weaker property, namely:

Lemma 3.11 Let F : CatEx
∞ → E be a reduced functor F landing in a stable E , then F is split-

Verdier localizing if and only if it sends split-Verdier sequences to exact sequences. The same
applies when changing both instances of split-Verdier to Verdier or Karoubi.

Proof. Using the same diagram as in the proof of lemma 3.8 and applying F :

F (G) F (C) F (D)

0 F (E) F (F)

we see that if F preserves say Verdier sequences, both the left square and the external rectangle
are exact. Then by the pasting law, so is the right square, as wanted.

Let C be a stable∞-category and denote j : C → Idem(C) the natural map. Since Idem(j) is an
equivalence, C → Idem(C)→ 0 is a Karoubi sequence. In consequence, for any Karoubi-localizing
F , we have an equivalence F (Idem(C)) ≃ F (C). In fact, the converse is true for Verdier-localizing
F : such a F is Karoubi-localizing if and only if it is invariant under idempotent completion, as we
now show:

Proposition 3.12 Let F be a Verdier-localizing invariant, then F is Karoubi-localizing if and
only if F is invariant under idempotent completion.

Proof. The above discussion gives one direction of this equivalence. We adapt the proof of
[CDH+23b, 1.5.6] in our context for the other.

Suppose F Verdier-localizing and invariant under idempotent-completion. Let the following
square be a Karoubi square, where f and g are Karoubi projections

C E

D F

f g

By proposition 3.6, Karoubi projections factor as a Verdier projection onto its essential image
followed by a fully-faithful map with dense image. Denote D0 the essential image of f and E0 that
of g, then the following square commutes:

C E

D0 E0

D F

where the top square is a Verdier square and the bottom vertical maps are fully-faithful with dense
image. Since F is invariant under idempotent completion, D0 → D is sent by F to an equivalence
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and similarly for E0 → E . But F is Verdier-localizing so sends the top square to an exact square
of Sp. This concludes.

Finally, we end this section by giving several examples of Verdier and Karoubi localizing in-
variants. First, we discuss algebraic K-theory and its non-connective variant.

Recall that algebraic K-theory K : CatEx
∞ → Sp and non-connective K-theory K : CatEx

∞ → Sp
are reduced functors preserving filtered colimits, and that the latter is invariant under idempotent
completion. Moreover, if C is idempotent complete, then K(C) is the connective cover of K(C). We
have the following:

Theorem 3.13 Algebraic K-theory K is Verdier localizing and non-connective K-theory K is
Karoubi localizing.

Proof. By Theorem 1.3 of [BGT13], we have that non-connective K-theory is Karoubi-localizing
(since what they mean by localizing is the combination of being Karoubi-localizing and commuting
with filtered colimits in our lingo), and that algebraic K-theory is split-Verdier localizing.

This is enough to deduce that algebraic K-theory is Verdier localizing, as in the proof of Corol-
lary 4.4.15 of [CDH+23b]. We will go a slightly different route, and replace the instance of [BGT13]
proving by that non-connective K-theory is Karoubi-localizing by the Special Fibration Theorem
[Bar16, Theorem 10.20], which gives a more direct proof of the fact that K-theory is Verdier-
localizing.

Suppose C → D → E is a Verdier sequence. Then, the Ind-completion of this sequence is again
a Verdier sequence by [CDH+23b, A.3.11] (this is in fact the case for Karoubi sequences), and
it is even right split by the subsequent remark of loc. cit. with both right adjoints additionally
preserving colimits. Hence, we have an accessible localisation functor L : Ind(D)→ Ind(E) between
compactly generated∞-categories, induced by D → E and whose right adjoint is fully-faithful and
preserves all colimits (so filtered ones in particular). Moreover, L-equivalences in Ind(D) are indeed
generated by those between the compact objects.

Hence the Special Fibration Theorem applies, and we have a fiber sequence of spaces:

K(Idem(C)) K(Idem(D)) K(Idem(E))

where we identified Idem(C) with the compact objects of Ind(C) and used the letter K to denote
the K-theory space. By the cofinality theorem [Bar16, Theorem 10.19], for every stable A, the
map K(A)→ K(Idem(A)) is injective on π0 and an isomorphism on higher homotopy groups. In
consequence, the map K(C)→ fib(K(D)→ K(E)) induces an equivalence on πn for n ≥ 1 by the
naturality of the long exact sequence of homotopy groups.

Since D → E is a Verdier projection, it is essentially surjective and thus K0(D) → K0(E) is
surjective. Consequently the fiber fib(K(D) → K(E)) is connective, so it suffices to show the
isomorphism of groups K0(C) ≃ π0 fib(K(D)→ K(E)).

The injective map K0(C) → K0(Idem(C)) factors through F = π0 fib(K(D) → K(E)) which
immediately implies that K0(C) → F is injective. In fact, the map F → K0(Idem(C)) is also
injective since it fits in the following cartesian square2 of groups:

F K0(D)

K0(Idem(C)) K0(Idem(D))

where K0(D) → K0(Idem(D)) is injective. Thus, by Thomason’s classification of dense subcate-
gories [CDH+23b, Theorem A.3.2], there exists a Karoubi equivalence C̃ → Idem(C) which factors
C → Idem(C) and such that K0(C̃) ≃ F .

Given the above cartesian square, we see that C̃ is also the full subcategory of X ∈ Idem(C)
such that the map K0(Idem(C))→ K0(Idem(D)) sends [X] to the subgroup K0(D) of the target.

2The canonical map from F to the pullback can be checked to be an equivalence by a diagram chase, using that
maps on K0 are injective and maps on K1 equivalences.
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Since D is also a dense subcategory Idem(D), another instance of Thomason’s theorem implies
that C̃ is the full subcategory of X ∈ Idem(C) such that i(X) ∈ D where i : Idem(C)→ Idem(D).
But the restriction i : C → D is a Verdier inclusion hence its image is closed under retracts so
X ∈ Idem(C) is sent to D if and only if X ∈ C. This implies C = C̃ which concludes.

Remark 3.14 A third proof of this fact has been recently given in [HLS22, Theorem 6.1]. It has
the notorious advantage on relying on much less machinery than the results of either Barwick
or Blumberg.

We turn now our attention to topological Hochschild homology and topological cyclic homology.
In [BGT13], the authors define a functor THH : CatEx

∞ → Sp which is Karoubi-localizing and
commutes to filtered colimits and comes with a natural transformation K → THH called the
Dennis trace map. This functors is first built on spectral categories following [BM12], and since it
inverts Morita equivalences, it induces a functor in the ∞-categorical setting.

This construction on the level of spectral categories of loc. cit. has actually more structure:
it comes with a functorial S1-action and even a cyclotomic structure. This refinement descends
to ∞-categories again because it preserves Morita equivalences. Recall from Theorem II.3.7 of
[NS17] however that the ∞-categorical version of cyclotomic spectra we are considering is not
quite CycSp, the ∞-category of cyclotomic spectra of loc. cit., but CycSpgen, the ∞-category of
genuine cyclotomic spectra, also defined in the work of Nikolaus-Scholze. Theorem II.3.8 ensures
those two coincide on bounded below objects but generally we are only guaranteed an exact functor
CycSpgen → CycSp.

The upshot of this story is that we have a functor THH : CatEx
∞ → CycSpgen, which we can

further compose to get THH : CatEx
∞ → CycSp and this functor recovers the THH of [BGT13]

when postcomposed by the forgetful functor fgt : CycSp→ Sp.

Write TC : CycSp → Sp for the functor corepresented by the cyclotomic spectra Striv, whose
underlying spectra is the sphere spectrum with trivial structure. Precomposing this functor by
THH yields another functor, topological cyclic homology, which we again denote TC:

TC : CatEx
∞ −→ Sp

By construction, TC comes with a natural transformation TC→ THH of functors to spectra, and
this natural transformation factors the Dennis trace map. The resulting factor K → TC is called
the cyclotomic trace, and features prominently in the Dundas-Goodwillie-McCarthy Theorem (see
1.2 of [NS17]).

Theorem 3.15 Topological Hochschild homology THH and topological cyclic homology TC are
Karoubi-localizing.

Proof. Proposition 10.2 of [BGT13] proves the claim for THH : CatEx
∞ → Sp since their notion

of localizing is stronger than our Karoubi-localizing one. Given the aforementioned refinement to
cyclotomic spectra and since CycSp → Sp is exact and detects equivalences, THH : CatEx

∞ →
CycSp is again Karoubi-localizing. The claim for TC directly follows since TC : CycSp → Sp is
exact.

Another proof of the statement for THH : CatEx
∞ → Sp can be assembled from Theorem 3.4

and Proposition 4.24 of [HSS17], which identify the trace of the endofunctor id : Ind(C)→ Ind(C)
in PrL

Ex equipped with the Lurie tensor-product with the spectrum THH(C).

4 The Projective Line
4.1 The Projective Line as a pullback

Let S1 be the ∞-groupoid corresponding to the 1-sphere, i.e. the coherent nerve of Z seen as a
discrete simplicial category. We let S1

+ and S1
− be the∞-categories corresponding to the inclusions

of monoids N+ → Z and N− → Z. These are the same ∞-categories3 and only their identification
3They are ∞-categories because they are fibrant simplicial ∞-categories, since discrete simplicial spaces are Kan

complexes
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within S1 differs.

Definition 4.1 By functoriality, the functors S1
± → S1 induce exact functors T± : S1

±⊗C → S1⊗C,
which we call the telescopes.

Remark 4.2 Realizing the tensor as the explicit construction given by Proposition 2.2 identifies
the telescope T+ as the left Kan extension along S1

+ → S1 of functors S1
+ → Ind(C). Since

S1
+ ≃ BN and S1 ≃ BZ, this left Kan extension can be explicitly constructed by freely inverting

the action of t the generator of N. This can be done via the standard procedure for freely adding
inverses, namely taking the filtered colimit in Ind(C) of the repeated action of t on V (∗) for a
functor V : S1

+ → Ind(C), and endowing it with the natural action of t which is now invertible.

Pulling back along the two telescopes T± : S1
± ⊗ C → S1 ⊗ C yields a stable ∞-category that

we call the Projective Line.
Definition 4.3 Let P(C) the ∞-category defined by the following pullback square:

P(C) S1
− ⊗ C

S1
+ ⊗ C S1 ⊗ C

The ∞-category P(C) is stable by [Lur17] 1.1.4.2 and we call it the Projective Line of C.

Remark 4.4 Since the inclusion CatEx
∞ → Cat∞ preserves limits, we can see P(C) as a pullback

in Cat∞, where pullbacks enjoy an explicit description as homotopy limits for the Joyal model
structure on sSet, the category of simplicial set. Hence, P(C) has objects triples (Y−, Y, Y+)
with given equivalences T±(Y±) ≃ Y , where Y+ ∈ S1

+ ⊗ C, Y− ∈ S1
− ⊗ C and Y ∈ S1 ⊗ C.

We now show algebraic K-theory, and in fact more generally, any Verdier-localizing invariants
sends the square defining the Projective line to a cartesian square of spectra. By the theory of
section 3, it suffices to show the square is a Verdier square, i.e. that the telescopes are Verdier
projections.

Lemma 4.5 The telescopes T± : S1
± ⊗ C → S1 ⊗ C are Verdier projections.

Proof. We show more generally that if K → L is a localisation functor, then K ⊗ C → L ⊗ C
is a Verdier projection. This is in particular the case for the telescopes, since they are induced by
BN ≃ S1

± → S1 ≃ BZ. This is a version of [CDH+23b] 1.4.10 (i) in the algebraic context.

By the universal property of tensor categories, we have the following commutative square for
every stable D:

FunEx(L⊗ C,D) Fun(L,FunEx(C,D))

FunEx(K ⊗ C,D) Fun(K,FunEx(C,D))

∼

∼

When K → L is a localization inverting a class of arrows W, the right vertical map is fully-
faithful with essential image functors K → FunEx(C,D) sending W to natural equivalences. Since
horizontal maps are equivalences, the left vertical map is also fully-faithful and its essential image
is exactly functors K ⊗ C → D which send arrows of W ′ to equivalences, where W ′ is the class of
arrows induced by a pair (f, id) with f ∈ W and id the identity of some object in C. In consequence,
K ⊗ C → L⊗ C is a localization. By proposition 3.4, this concludes.

Corollary 4.6 The cartesian square defining P(C) is a Verdier square. In particular, for any
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Verdier localizing invariant F , the following square of spectra is cartesian:

F (P(C)) F (S1
− ⊗ C)

F (S1
+ ⊗ C) F (S1 ⊗ C)

4.2 An explicit calculation for the Projective Line
The preceding section gave a straightforward understanding of P(C) under a Verdier localizing

invariant since such a pullback square is preserved by such an invariant. The goal of this section is
to show it is possible to make an effective calculation of F (P(C)) under slightly stricter hypotheses
on either our Verdier invariant F or our stable ∞-category C. Let us first give a definition

Definition 4.7 Let C be a stable category. There is an exact functor ψ0 : C → P(C) which is
given by the left Kan extensions L±

∗,X and L∗,X on the respective components. It is well-defined
because we have equivalences T±(L±

∗,X) ≃ L∗,X which are natural in X.

Our computation of F (P(C)) is given by the following theorem:

Theorem 4.8 Let F : CatEx
∞ → Sp be a Verdier-localizing invariant and C a stable idempotent-

complete ∞-category. The natural map ψ0 : C → P(C) is a right-split Verdier inclusion with
cofiber C, which in particular induces an equivalence of spectra F (P(C)) ≃ F (C)⊕ F (C).

Remark 4.9 The above theorem is our version of the projective bundle formula of Theorem 4.2.5
in [CK20]. Our proof will be significantly longer as we cannot (and do not want to) rely on the
spectral algebraic geometry developed in [Lurng].

The remainder of the section is dedicated to the proof. Fix a stable∞-category C, which we will
suppose furthermore idempotent complete after lemma 4.13. To construct the equivalence of the
theorem, we introduce a functor Φ : P(C)→ C which we will show is a left-split Verdier projection.
We will then identify its fiber as none other than C, and the equivalence of the theorem will follow
from the splitting lemma.

For the construction of Φ, recall the explicit description of the objects of P(C) of 4.4. Objects
are triplets (Y−, Y, Y+) coming with equivalences T±(Y±) ≃ Y . Equivalently, by the adjunction
between left Kan extensions and precompositions, these are maps Y± → i±(Y ) of Fun(S1

±, Ind(C)),
where i± is the forgetful functor associated to S1

± → S1 (see Definition 2.7).

In consequence, to each object of P(C) is functorially associated a map Y− ⊕ Y+ → Y in
Ind(C) where Y−, Y and Y+ should be their image by the respective forgetful functors, which we
abusively denoted the same way to avoid unnecessary notation clutter. This defines a functor
P(C)→ Map(∆1, Ind(C)).

Definition 4.10 Let Φ : P(C)→ Ind(C) be the functor defined as the composite

P(C) Fun(∆1, Ind(C)) Ind(C)fib

On objects, this is the fiber of Y− ⊕ Y+ → Y , namely, we have the following exact square in
Ind(C):

Φ(Y−, Y, Y+) Y− ⊕ Y+

0 Y

In [HKV+01], whose proof serves as inspiration for ours, the authors use a slightly different
construction: instead of the functor Φ, they introduce a functor Γ, the global section functor,
obtained by taking the cofiber of the map Y−⊕Y+ → Y instead of the fiber. This was necessary in
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the context of loc. cit. since the Waldhausen categories considered were not supposed to have all
finite limits. In our stable setting where both exist, we found the fiber to be easier to work with
and hence replaced instances of Γ by Φ. This is merely by convenience: all of the following could
be done by replacing Φ by Γ and suitably changing the proofs.

We also need to consider shift functors, which are the higher categorical version of those in
[HKV+01]:

Definition 4.11 Let n ∈ Z, the n-shift functor [n] : P(C)→ P(C) is the functor given on objects
by sending a triple (Y−, Y, Y+) to the same triple but where the equivalence T−(Y−) ≃ Y is
composed by the equivalence tn : Y → Y .

There is an arbitrary choice made in working with the S1
−-component for shifts, and one could

define a shift on the S1
+-side. However, a triple (Y−, Y, Y+) shifted on the Y+-side is equivalent in

P(C) to a shift on the Y−-side of the same triple, the equivalence being induced by the following
commutative diagram:

T−(Y−) Y T+(Y+)

T−(Y−) Y T+(Y+)

t−n

tn

t−n

In the following, whenever we mention a shift on the S1
+-components, we also implicitly apply the

above equivalence to get a S1
−-shift.

Using shifts, one can lift any map between the S1 ⊗ C-components of objects of P(C) to a map
of P(C) itself.

Lemma 4.12 Let y = (Y−, Y, Y+) and z = (Z−, Z, Z+) be two objects of P(C) and F : Y → Z.
Then, there exists z′ ∈ P(C) which only differs from z by shifts and a map f : y → z′ whose
component Y → Z is the prescribed F up to a shift of a power of t.

Proof. We appeal to the description of the telescope of Remark 4.2. After forgetting the extra
structure, i.e. as an object of Fun((S1

−)op, Ind(C)), Z is the filtered colimit of Z− under the action
of t. But Y− is compact in Fun((S1

−)op, Ind(C)) since it belongs to S1
−⊗C, hence the map Y− → Z

induced by the equivalence T−(Y−) ≃ Y factors through Z− at some finite point, i.e. through some
finite shift of Z−. This, with the analogous procedure for Y+ and Z+ (see the remark above), gives
a globally finite object z′ with the same components as z but shifted equivalences T±(Z±) ≃ Z,
and z′ comes with a well-defined map f : y → z′ with the wanted F : Y → Z up to a shift by a
power of t as its middle component.

The crucial observation is that Φ lands in the subcategory of Ind(C) of compact objects, namely
Idem(C). In particular, when C is idempotent complete, this is the functor P(C) → C we were
looking for.

Lemma 4.13 For any y ∈ P(C), we have Φ(y) ∈ Idem(C).

Proof. Any object X ∈ C gives rises to an object of P(C) by taking respective left Kan extensions
L±

∗,X and L∗,X of the constant functor ∗ → Ind(C) associated to X along the inclusions of the point
in S1

± and respectively S1. Those left Kan extensions are compatible with the telescopes, i.e. there
are equivalences T±(L±

∗,X) ≃ L∗,X in S1⊗C. Hence, the triple ψ0(X) := (L+
∗,X , L∗,X , L

−
∗,X) actually

defines an object of P(C).
The ∞-category of such objects and their shifts need unfortunately not be stable, but we can

consider Pgf (C), the smallest full stable subcategory of P(C) containing the above objects as well
as their shifts. We call objects of Pgf (C) globally finite.

Our first claim is that Φ maps globally finite objects to C. Indeed, once we have forgotten the
extra structure, then we simply have L∗,X ≃

∐
ZX and L±

∗,X ≃
∐

N±
X as objects of Ind(C), and
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the map L+
∗,X ⊕ L

−
∗,X ≃ L∗,X is ∐

N+

X ⊕
∐
N−

X −→
∐
Z
X

which is the inclusion of each summand along the inclusions N± ⊂ Z. Thus, upon shifting once, we
have an equivalence4 which means Φ((L+

∗,X , L∗,X , L
−
∗,X)[−1]) ≃ 0 and shifting either adds copies

of X or copies of ΩX, depending on whether copies of X are missed or mapped-to twice. Since Φ
is an exact functor, it preserves finite colimits and thus sends globally finite objects to C.

Let y = (Y−, Y, Y+) ∈ P(C). We claim we can find a globally finite object z = (Z−, Z, Z+) with
a map F = (f−, f, f+) : y → z such that the component f : Y → Z is an equivalence. Indeed,
by lemma 4.12, it suffices to build a globally finite object z with an equivalence F : Y → Z.
Letting Z = Y and F be the identity, this reduces to building a globally finite object whose middle
component is any prescribed Z ∈ S1 ⊗ C.

Using that S1⊗C is the smallest full stable subcategory of Fun(S1, Ind(C)) containing the free
L∗,X for X ∈ C and that (L+

∗,X , L∗,X , L
−
∗,X) is a suitable globally finite object with middle term

L∗,X , the above property follows from the stability by pushout of "being the middle component of
a globally finite object". Given a pushout square

X Y

Z T

and globally finite objects (X−, X,X+), (Y−, Y, Y+) and (Z−, Z, Z+), one can lift the span Z ←−
X −→ Y to Pgf (C) using Lemma 4.12 up to shifting the given globally finite objects. Then, taking
the actual pushout in Pgf (C) is done component-wise (the inclusion Pgf (C) ⊂ P(C) is exact by def-
inition), hence gives a globally finite object (T−, T, T+) whose middle component is the prescribed
T . This proves our claim.

Having chosen such a globally finite object z with a map F , we can consider the cokernel of F ,
which is an object of P(C) obtained as the following triple coker(F ) ≃ (coker(f−), 0, coker(f+)). In
consequence, it verifies

Φ(coker(F )) = coker(f−)⊕ coker(f+)

where the coker(f±), originally computed in S1
± ⊗ C, are now considered as objects of Ind(C) (i.e.

there is an implicit forgetful functor fgtS1
±

).

We now show that in fact, coker(f±) ∈ Idem(C). In S1
±⊗C, we have a natural map coker(f−)→

T−(coker(f−)) induced by the identity of T−(coker(f−). Since T−(coker(f−)) = 0 and coker(f−)
is compact in Fun(S1

−, Ind(C)), the filtered colimit description guarantees that there is some
m ≥ 0 such that tm : coker(f−) → coker(f−) is the zero map. In consequence, the identity
coker(f−) → coker(f−) factors through coker(tm). But coker(tm) ∈ C, indeed this is clear if
coker(f−) is of the form L−

∗,X and in general, coker(f−) is a finite colimit of such objects, which
commute to the formation of coker(tm). This shows the coker(f±) are retracts of objects of C,
hence are in Idem(C). In consequence, Φ(coker(F )) ∈ Idem(C) since the latter is stable by direct
sum.

Since Φ preserves finite colimits, the following square is exact:

Φ(y) Φ(z)

0 Φ(coker(F ))

Φ(F )

We have Φ(z) ∈ C and Φ(coker(F )) ∈ Idem(C) hence the fiber Φ(y) ∈ Idem(C) as wanted. This
concludes.

4We remind here the reader that what we call N is a monoid, hence contains 0, in good Bourbaki fashion, and
thus there is a double identification of the zeroth summand in the above map.
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Hence, we have a well-defined map Φ : P(C) → Idem(C). In particular, when C is idempotent
complete, which we now suppose for the rest of the section, we have a functor Φ : P(C)→ C.
Our goal is first to show that Φ is a left-split Verdier projection and then to identify its fiber with
C.

We will show ψ0, which we defined in Definition 4.7, is the wanted left adjoint of Φ. As a
preliminary remark, we have the following calculation:

Lemma 4.14 We have an equivalence Φ ◦ ψ0(X) ≃ X for any X ∈ C.

Proof. By definition, Φ(ψ0(X)) is the fiber of
∐

N+
X ⊕

∐
N−

X →
∐

ZX. This is simply the
projection X ⊕

∐
ZX →

∐
ZX, which has fiber X.

We can now show the following:

Proposition 4.15 Φ is a left-split Verdier projection.

Proof. In order to show this, we only need showing Φ has a fully-faithful left adjoint, by 3.5.
We show it is in fact given by the functor ψ0 : C → P(C). Since Φ ◦ψ0 ≃ id by Lemma 4.14, it will
follow from the adjunction that ψ0 is fully-faithful.

The functor Φ is actually the restriction of a more general Ψ : Ind(P(C)) → Ind(C), where
Ind(P(C)) is the following pullback:

Ind(P(C)) Fun(S1
+, Ind(C))

Fun(S1
−, Ind(C)) Fun(S1, Ind(C))

and Ψ is given by the same formula. Clearly, Ψ has a left adjoint Ψ0 : Ind(C)→ Ind(P(C)) which
gives component-wise the left Kan extension of a point X ∈ Ind(C) along the inclusion ∗ → S1

±.
Restricting Ψ to P(C) gives Φ : P(C)→ C since C is idempotent-complete and restricting Ψ0 to

C yields ψ0 : C → P(C) hence the adjunction descends to the restrictions.

Since Φ is a left-split Verdier projection, the following fiber sequence is a left-split Verdier
sequence:

P(C)Φ P(C) CΦ

where the superscript Φ indicates the fiber of Φ. Hence, this sequence will split under a Verdier
localizing invariant. Thus, to prove the theorem, it now suffices to identify P(C)Φ with C.

Recall the definitions of the n-shifts functors [n] given in 4.11. Clearly, [n] and [−n] are inverses
of one another, and the proof of the lemma 4.14 shows ψ0(X)[−1] lies in the fiber of Φ. Thus we
have an adjoint pair Φ ◦ [1] and [−1] ◦ ψ0 which descends to P(C)Φ and C. Since [−1] ◦ ψ0 is again
fully-faithful, this means Φ ◦ [1] is also a right-split Verdier projection and we have the following
right-split Verdier sequence:

(P(C)Φ)Φ◦[1] P(C)Φ C

where the superscript Φ ◦ [1] denotes again the fiber. This right-split Verdier sequence will once
again split under a Verdier localizing invariant. Thus to conclude, it suffices to show the fiber
(P(C)Φ)Φ◦[1] is zero, which is done in the following lemma:

Lemma 4.16 For any C stable, we have (P(C)Φ)Φ◦[1] ≃ 0.

Proof. Let y = (Y−, Y, Y+) ∈ P(C), there is a map u : y → [1]y which is the identity on Y and
Y+ and t−1 : Y− → Y− on the first term. There is also another map d : y → [1]y which has the
identity on Y− and t : Y → Y as well as t : Y+ → Y+. Those maps can be shifted by [−1] and
we claim the composites d ◦ (u[−1]) and u ◦ (d[−1]) : [−1]y → [1]y are equivalent; indeed, this is
canonically the case on non-negative and non-positive parts as it amounts to a choice of homotopy
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f ◦ id ≃ id ◦f for f the action of either t or t−1, consequently the two homotopies also agree on
the total space hence providing a global homotopy between the two maps in P(C). Hence we have
a commutative square

[−1](y) (y)

(y) [1](y)

u[−1]

d[−1] u

d

This square is in fact exact; by [Lur08] 5.4.5.5, it suffices that the two projections on S1
±⊗C of this

square are exact, which is clear since horizontal morphisms are identities and vertical morphisms
identical.

The functor [n] preserves cartesian squares since it is an equivalence, hence we more generally
have a cartesian square for every n ∈ N:

[n− 1](y) [n](y)

[n](y) [n+ 1](y)

u[n−1]

d[n−1] u[n]

d[n]

Since Φ is exact, it preserves pullbacks and applying it to the above square, we have a third exact
square:

Φ([n− 1](y)) Φ([n](y))

Φ([n](y)) Φ([n+ 1](y))

Thus, if y ∈ P(C) is such that both Φ(y) ≃ 0 and Φ ◦ [1](y) ≃ 0, i.e. an element of (P(C)Φ)Φ◦[1],
then induction on n ∈ Z implies that Φ ◦ [n](y) ≃ 0 for every n. Hence, when y ∈ (P(C)Φ)Φ◦[1], the
following exact sequence

Φ ◦ [n](y) Y− ⊕ Y+ Y
tnα−⊕α+

gives that tnα− ⊕ α+ is an equivalence.

To conclude, our proof now takes a detour through homotopy groups of a stable ∞-category
C, so let us recall quickly what they are. For X ∈ C, we denote πX(−) := π0 MapInd(C)(X,−), the
zeroth homotopy group of the spectrum5 MapInd(C)(X,−). For n ∈ Z, the stability of C implies
that taking πn instead of π0 in the preceding formula simply changes πX to πΣnX . In consequence,
since Ind(C) is generated under filtered colimits by C, the Yoneda lemma implies that the πX

jointly detect equivalences for X ∈ C.

Using remark 4.2, the equivalences T±(Y±) ≃ Y show that Y is the filtered colimit of a tower
of Y± where the maps are induced by the action of t±1. For any X ∈ C, MapInd(C)(X,−) preserves
filtered colimits because X is compact in Ind(C), hence for any v+ ∈ πX(Y+), its image α+(v+)
in πX(Y ) can be realised as some tnα−(v−) for some v− ∈ πX(Y−) and some n ∈ N+. But then,
α+⊕ tnα− sends (v+,−v−) to zero in πX(Y ). Since it is also an isomorphism by above, this means
v+ was zero to start with.

Hence, πX(Y+) = 0 for all compact X, meaning Y+ ≃ 0 and dually Y− ≃ 0. In consequence,
Y ≃ T+(0) ≃ 0, and finally y = 0. Hence we have shown that (P(C)Φ)Φ◦[1] is zero as wanted.

This concludes the proof of Theorem 4.8.
5Recall that stable ∞-categories are naturally enriched in Sp
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5 The Fundamental Theorem of Verdier-localizing invari-
ants and its consequences

Assembling the results from the preceding section gives us the following: for any Verdier-
localizing F and any stable idempotent-complete C, the following square is cartesian:

F (C)⊕ F (C) F (S1
− ⊗ C)

F (S1
+ ⊗ C) F (S1 ⊗ C)

Our first subsection shows how to turn this cartesian square into the announced Theorem 1.3
(5.1 in the text) and its corollary Theorem 1.4 when F is furthermore Karoubi-localizing (5.3 in
the text). In the subsequent subsections, we draw consequences from this Theorem for algebraic
K-theory of spaces, algebraic K-theory of rings and topological Hochschild homology as well as
topological cyclic homology.

5.1 Main results
Combining the results of the previous section, we have the following:

Theorem 5.1 Let C be a stable idempotent complete∞-category and F : CatEx
∞ → Sp a Verdier-

localizing invariant. Then, we have the following equivalence of spectra:

F (S1 ⊗ C) ≃ F (C)⊕ ΣF (C)⊕N+F (C)⊕N−F (C)

where N±F (C) are equivalent nil-terms.

Proof. From the preceding section, we have a cartesian square

F (C)⊕ F (C) F (S1
− ⊗ C)

F (S1
+ ⊗ C) F (S1 ⊗ C)

The top left corner is obtained by composing the square of 4.6 and the equivalence F (C)⊕F (C) ≃
F (P(C)) of Theorem 4.8 induced by ψ0. Remark that by Lemma 4.14, both arrows F (C) →
F (S1

±⊗C) have a retraction given by the map induced by Φ, hence they split in Sp. We thus have
an equivalence:

F (S1
± ⊗ C) ≃ F (C)⊕N±F (C)

where N±F (C) is the fiber of the respective splitting map. For the same reasons, F (S1 ⊗ C) splits
as F (C)⊕ P with some fiber P. The maps F (C)⊕ F (C)→ F (C)⊕N±F (C) are by definition zero
on the nil-term. Hence, taking the fiber by the first projection, we have the following cartesian
square:

F (C) N−F (C)

N+F (C) P

where both maps F (C) → N±F (C) are zero. All of the above construction are natural hence the
above square defines an exact sequence of functors F → N+F ⊕N− → P, where the first map is
nullhomotopic. This means we have in fact a commutative diagram in Fun(CatEx

∞ ,Sp):

F 0 N+F ⊕N−F

0 ΣF P
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The left square is exact by definition and the outer one by the above. The pasting law then implies
the right square is also exact. Since the suspension is computed pointwise, we have the following
equivalence, natural in stable idempotent-complete C:

P ≃ ΣF (C)⊕N−F (C)⊕N+F (C)

Given that F (S1 ⊗ C) ≃ F (C)⊕ P, this concludes the proof of the main theorem.

Remark 5.2 By Lemma 4.5, the map S1
+⊗C → S1⊗C is a Verdier projection, hence if we denote

Nil(C) its fiber in CatEx
∞ , we have for every Verdier localizing F : CatEx

∞ → Sp

F (Nil(C)) ≃ F (C)⊕ ΩN+F (C)

A similar splitting appeared in the setting of additive 1-category with twisted coefficients in
[LS16].

In the specific case where F is Karoubi-localizing, which is exactly asking it is Verdier-localizing
and invariant under idempotent completion by Proposition 3.12, our statement works more gen-
erally for any stable C. This is because S1 ⊗ C and S1 ⊗ Idem(C) have the same idempotent
completion, namely S1⊗̂C ≃ Fun(S1, Ind(C))c. Hence in that case, we can further replace ⊗ by ⊗̂
in the formula of 5.1.

Theorem 5.3 Let C be any stable∞-category and F : CatEx
∞ → Sp a Karoubi-localizing invariant.

Then, we have the following equivalence of spectra:

F (S1 ⊗ C) ≃ F (C)⊕ ΣF (C)⊕N+F (C)⊕N−F (C)

where N±F (C) are equivalent nil-terms extended from Theorem 5.1 in the obvious way.

Since Idem(S1 ⊗ C) = S1⊗̂C = Fun(S1, Ind(C))c, we also have the following equivalence of
spectra:

F (S1⊗̂C) ≃ F (C)⊕ ΣF (C)⊕N+F (C)⊕N−F (C)

which is often the more practical formula of the two.

In the rest of this section, we will exclusively draw consequences from Theorem 5.3. As a first
corollary, recall that Theorem 3.13 states that non-connective K-theory K is Karoubi localizing,
hence the following formula:

Corollary 5.4 We have the following equivalence of spectra for a stable C:

K(S1⊗̂C) ≃ K(C)⊕ ΣK(C)⊕N+K(C)⊕N−K(C)

Remark 5.5 Theorem 3.13 also states that (connective) algebraic K-theory is Verdier-localizing,
so one may be tempted to apply Theorem 5.1 directly, without going through the non-connective
version. However, the formula obtained this way differs in π0 from the usual formula of the
fundamental theorem of K-theory.

Indeed, the formula misses the term induced by the non-connective delooping, since the sus-
pension of a connective spectra is always connected. This does not make the formula incorrect
(thankfully!), however, since K(S1 ⊗ C) is not K(S1⊗̂C), and differs exactly by a factor in π0
per Wall’s finiteness obstruction (see [Lur14] lecture 15, Theorem 17 for a modern version of
this).

This exemplifies the reason we will mostly be using this second version in the following,
even when we want results about connective K-theory which is not Karoubi-localizing: the
usual formulas of the literature such as [Gra76] or [HKV+01] involve non-connective terms
which cannot be obtained without the non-connective input of negative K-groups, i.e. non-
connective K-theory. Still, the first formula can find some use, notably in establishing a version
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of the formula for the finite version of algebraic K-theory of space.

5.2 The Fundamental Theorem for algebraic K-theory of spaces
In this short subsection, we explain how Corollary 5.4 can be used to extend the fundamental

theorem of algebraic K-theory of spaces, proved in [HKV+01], to a non-connective version. From
this, we will also be able to deduce their version for the connective K-theory of spaces, and actually
extend it to the context of spectra.

We shortly recall how algebraic K-theory of spaces is defined in our ∞-categorical context
(see for instance Lecture 21 of [Lur14]). Let X be a space, which in the following will mean a
simplicial set which is an∞-groupoid. We are interested in two stable∞-categories Fun(X,Sp)fin

and its idempotent completion Fun(X,Sp)c. The latter is the subcategory of compact objects
of Fun(X,Sp) and the former is the smallest stable full subcategory containing all the left Kan
extension along the inclusion ∗ ⊂ BX of constant functors to Sp.

We denote Af (X) the connective K-theory of the first and Afd(X) that of the second; they
are respectively the finite and finitely dominated version of the algebraic K-theory of the space
X. Taking non-connective algebraic K-theory of either yields a non-connective K-theory of the
space X, which we denote Afd(X). The original version of the A-functor, defined by Waldhausen
in [Wal85], is the finite version and the finitely dominated one, which only differs in its π0 (a
phenomenon related to Wall’s finiteness obstruction, see [Lur14]), was introduced in [HKV+01] in
order to prove the same formula we are now going to produce.

By lemma 2.5 and the subsequent remark, if X is a space, then the idempotent comple-
tion of S1 ⊗ Fun(X,Sp)c is Fun(X × S1,Sp)c since Ind(Fun(X,Sp)c) ≃ Fun(X,Sp). Moreover,
the explicit construction of the tensor product given by Proposition 2.2 gives an equivalence
S1 ⊗ Fun(X,Sp)fin ≃ Fun(X × S1,Sp)fin.

Applying Corollary 5.4 with C = Fun(X,Sp)c then gives the following:

Theorem 5.6 Let X be a space. Then, we have the following splitting of non-connective K-theory:

Afd(S1 ×X) ≃ Afd(X)⊕ ΣAfd(X)⊕N+Afd(X)⊕N−Afd(X)

where N±Afd(X) are equivalent nil-terms.

Taking the connective cover of the theorem yields the known formula of [HKV+01] since all
categories in question are idempotent complete. Namely, we have:

Corollary 5.7 Let X be a space. Then, we have the following splitting of finitely-dominated
algebraic K-theory of spaces:

Afd(S1 ×X) ≃ Afd(X)⊕BAfd(X)⊕N+A
fd(X)⊕N−A

fd(X)

where N±A
fd(X) are equivalent nil-terms and BA(X) is the (non-connective) delooping of

A(X) which has π−1Afd(X) as its π0.

As we explained before, it is not possible to deduce from this formula a version for finite
algebraic K-theory of spaces, because we rely crucially on the idempotent-completeness of the
stable ∞-categories in question, and the finite categories of module are not idempotent-complete.

5.3 The Fundamental Theorem for K-theory of ring spectra
The result of the previous section falls in fact in a more general setting: non-connective K-theory

of arbitrary ring spectra, i.e. A∞-ring objects of Sp aka E1-ring objects of Sp. The non-connective
K-theory of a stable∞-category can always be expressed as the (filtered colimit of) non-connective
K-theory of ring spectra, as explained in [Lur14] (Lecture 19, Remark 4), hence this is as much a
general statement as our main theorem.
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For algebraic K-theory of a space X, this ring spectrum is S[ΩX]. Since S[ΩX][t, t−1] ≃
S[Ω(X × S1)], the version of the fundamental theorem for ring spectrum, which we will now ex-
plicit, recovers as a special case the formula of the section above for algebraic K-theory of spaces.

We denote RMod the ∞-category of R-module spectra, and Perf(R) its subcategory of com-
pact objects. We let K(R) and K(R) be the non-connective and regular K-theory of Perf(R). Just
as for algebraic K-theory of spaces, the idempotent completion of S1 ⊗ Perf(R) is Perf(R[t, t−1]),
using that the Ind-construction of Perf(R) is RMod, and denoting R[t, t−1] the ring spectrum of
Laurent polynomials in R.

Applying Corollary 5.4 to C = Perf(R) yields the following fundamental theorem for algebraic
K-theory of ring spectra:

Theorem 5.8 For R a ring spectrum, we have the following splitting of non-connective K-theory:

K(R[t, t−1]) ≃ K(R)⊕ ΣK(R)⊕N+K(R)⊕N−K(R)

where N±K(R) are equivalent nil-terms.

In particular, taking connective covers gives a formula for the connective K-theory of a ring
spectrum:

Theorem 5.9 For R a ring spectrum, we have the following splitting of connective K-theory:

K(R[t, t−1]) ≃ K(R)⊕ BK(R)⊕N+K(R)⊕N−K(R)

where N±K(R) are nil-terms obtained as the connective covers of N±K(R) and BK(R) is the
non-connective delooping of K(R) whose π0 is K−1(R).

Remark 5.10 If R is a ring, then denote HR the associated Eilenberg-MacLane ring spectrum.
The K-theories K(R) and K(HR) are equivalent by Barwick’s theorem of the heart [Bar15,
Theorem 6.1], since K(R) is the K-theory of the 1-category of compact R-modules and K(HR)
is the category of its bounded derived ∞-category which is exactly Perf(HR).

Since (HR)[t, t−1] ≃ H(R[t, t−1]), the preceding theorem recovers the usual Bass-Heller-
Swan fundamental theorem of the K-theory of rings.

Like in the case of algebraic K-theory of spaces, we could also consider the smallest stable
subcategory of RMod containing R, that we denote RModfin. It is contained in Perf(R), which
is its idempotent completion, and taking its K-theory plays a similar role to finite algebraic K-
theory of spaces with regards to its finitely-dominated variant. However, due to those categories
not being idempotent-complete and connective K-theory not being Karoubi localizing, we cannot
apply either of our results.

5.4 The fundamental theorem for THH and TC
By Theorem 3.15, topological Hochschild homology and topological cyclic homology, central

tools of trace methods, are Karoubi-localizing. In consequence, Theorem 5.3 applies to them and
gives the following Bass-Heller-Swan formulas:

Theorem 5.11 Let C be a stable ∞-category, then we have the two following splitting, the first
in cyclotomic spectra and the second in spectra:

• THH(S1⊗̂C) ≃ THH(C)⊕ Σ THH(C)⊕N+ THH(C)⊕N− THH(C)

• TC(S1⊗̂C) ≃ TC(C)⊕ Σ TC(C)⊕N+ TC(C)⊕N− TC(C)

where N+ THH(C) and N− THH(C) are equivalent nilterms and similarly for N+ TC(C) and
N− TC(C).
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In particular, all the formulas for algebraic K-theory, THH and TC are deduced from Theorem
5.3 which is natural in the invariant, the Dennis trace map and the cyclotomic trace preserve the
decompositions of the fundamental theorem.

The same specialisation as for algebraic K-theory above can be done for THH and TC of ring
spectra. In particular, knowing that THH(S) = Striv is the cyclotomic sphere, we find that

THH(S[t, t−1]) = Striv ⊕ ΣStriv ⊕N+ THH(S)⊕N− THH(S)

where the last two summands are equivalent. As a cyclotomic spectrum, the nilterm N THH(S)
is of importance: indeed, using [NS17], we see that for a cyclotomic spectrum X, we have an
equivalence TR(X) ≃ MapCycSp(N THH(S), X). The underlying spectrum of N THH(S) is known
to split as an infinite coproduct (see [McC23] where it is called ˜THH(S[t])).

References
[Bar15] Clark Barwick. On exact ∞-categories and the theorem of the heart. Compositio

Mathematica, 151(11):2160 –– 2186, 2015.

[Bar16] Clark Barwick. On the algebraic K-theory of higher categories. Journal of Topology,
Volume 9:245 – 357, March 2016. https://doi.org/10.1112/jtopol/jtv042.

[BGT13] Andrew J. Blumberg, David Gepner, and Goncalo Tabuada. A universal characteri-
zation of higher algebraic K-theory. Geometry & Topology, 17(2):733 – 838, 2013.

[BM12] Andrew J. Blumberg and Michael A. Mandell. Localization theorems in topologi-
cal hochschild homology and topological cyclic homology. Geometry and Topology,
16:1053––1120, 2012.

[CDH+23a] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus
Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Her-
mitian K-theory for stable ∞-categories I: Foundations. Selecta Mathematica, 29(1):1
– 269, 2023.

[CDH+23b] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus
Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Her-
mitian K-theory for stable ∞-categories II: Cobordism categories and additivity.
Preprint, 2023.

[CDH+23c] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus
Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermi-
tian K-theory for stable∞-categories III: Grothendieck-witt groups of rings. Preprint,
2023.

[CDH+23d] Baptiste Calmès, Emanuele Dotto, Yonathan Harpaz, Fabian Hebestreit, Markus
Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle.
Hermitian K-theory for stable ∞-categories IV: Poincaré motives and Karoubi-
Grothendieck-Witt groups. Upcoming, 2023.

[CK20] Denis-Charles Cisinski and Adeel A. Khan. a1-homotopy invariance in spectral alge-
braic geometry. Preprint, 2020.

[FO18] Ernest E. Fontes and Crichton Ogle. Fundamental theorem for the K-theory of con-
nective S-algebras. Preprint, 2018.

[Gra76] Daniel Grayson. Higher algebraic K-theory. II (after Daniel Quillen). Algebraic K-
theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), 1976.

[HKV+01] Thomas Hüttemann, John R. Klein, Wolrad Vogell, Friedhelm Waldhausen, and Bruce
Williams. The “fundamental theorem” for the algebraic K-theory of spaces: I. Journal
of Pure and Applied Algebra, 160(1):21 – 52, 2001.

25

https://doi.org/10.1112/jtopol/jtv042


[HLS22] Fabian Hebestreit, Andrea Lachmann, and Wolfgang Steimle. The localisation theo-
rem for the K-theory of stable ∞-categories. Preprint, 2022.

[HSS17] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. Higher traces, noncommutative
motives and the categorified Chern character. Advances in Mathematics, 309:97 ––
154, 2017.

[Hü20] Thomas Hüttemann. The “fundamental theorem” for the algebraic K-theory of
strongly Z-graded rings. Documenta Mathematica, 26:1557 – 1599, 2020.

[LS16] Wolfgang Lück and Wolfgang Steimle. A twisted Bass-Heller-Swan decomposition for
the algebraic K-theory of additive categories. Forum Mathematicum, 28:129 – 174,
2016.

[Lur08] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2008.

[Lur14] Jacob Lurie. Lecture notes for Algebraic K-Theory and Manifold Topology (Math 281),
2014. Accessible at https://www.math.ias.edu/~lurie/281.html.

[Lur17] Jacob Lurie. Higher Algebra. Princeton University Press, 2017.

[Lurng] Jacob Lurie. Spectral Algebraic Geometry. Available at the author’s webpage, 2022
(on going).

[McC23] Jonas McCandless. On curves in K-theory and TR. Journal of the European Mathe-
matical Society, 2023.

[NS17] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Mathe-
matica, 221, 2017.

[Tab12] Goncalo Tabuada. The fundamental theorem via derived Morita invariance, localiza-
tion, and a1-homotopy invariance. Journal of K-theory, 9(3):407 – 422, 2012.

[TT90] Robert W. Thomason and Thomas Trobaugh. Higher algebraic K-Theory of schemes
and of derived categories. The Grothendieck Festschrift, Vol. III, 1990.

[Wal85] Friedrich Waldhausen. Algebraic K-Theory of spaces. Algebraic and Geometric Topol-
ogy, Proceedings Rutgers 1983, 1126:318 – 419, 1985.

26

https://www.math.ias.edu/~lurie/281.html

	Introduction
	Semi-exact tensoring of stable -categories
	Verdier, Karoubi sequences and localizing invariants
	Verdier and Karoubi sequences
	Verdier- and Karoubi-localizing invariants

	The Projective Line
	The Projective Line as a pullback
	An explicit calculation for the Projective Line

	The Fundamental Theorem of Verdier-localizing invariants and its consequences
	Main results
	The Fundamental Theorem for algebraic K-theory of spaces
	The Fundamental Theorem for K-theory of ring spectra
	The fundamental theorem for `3́9`42`"̇613A``45`47`"603ATHH and `3́9`42`"̇613A``45`47`"603ATC


